Hall effects and diamagnetic cavity collapse during a laser plasma cloud expands into a vacuum magnetic field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper describes the results of a laboratory experiment on the sub-Alfven expansion of a quasi-spherical laser plasma cloud into a vacuum magnetic field in the regime of nonmagnetized ions. The role of Hall fields and currents in the anomalously fast dynamics of the magnetic field during the collapse phase of a diamagnetic cavity is considered. Detailed spatial measurements of the azimuthal Hall fields configuration are demonstrated and their relationship to diamagnetic cavity collapse is determined. As a result of the experiment, data were obtained confirming the hypothesis about the transfer of the main magnetic field by the movement of electrons associated with Hall currents.

Full Text

Restricted Access

About the authors

А. А. Chibranov

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

I. F. Shaikhislamov

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

А. G. Berezutskiy

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

V. G. Posukh

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

P. А. Trushin

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

Yu. P. Zakharov

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

I. B. Miroshnichenko

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

М. S. Rumenskikh

Institute of Laser Physics Siberian Branch of the Russian Academy of Sciences

Email: chibranov2013@yandex.ru
Russian Federation, Novosibirsk

V. А. Terekhin

Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics

Email: chibranov2013@yandex.ru
Russian Federation, Sarov

References

  1. P.A. Bernhardt, R.A. Roussel‐Dupre, M.B. Pongratz, G. Haerendel, A. Valenzuela, D.A. Gurnett, and R.R. Anderson, J. Geophys. Res. Space Phys. 92, 5777 (1987).
  2. P.A. Bernhardt, Physics of Fluids B: Plasma Physics 4, 2249 (1992).
  3. N.A. Krall and P.C. Liewer, Phys. Rev. A 4, 2094 (1971).
  4. A.B. Hassam and J.D. Huba, Geophys. Res. Lett. 14 (1), 60 (1987).
  5. Y.P. Zakharov, A.M. Orishich, A.G. Ponomarenko and V.G. Posukh, Plasma Phys. Rep. 12, 674 (1986).
  6. И.М. Подгорный и Р.З. Сагдеев, УФН. 98, 409 (1969).
  7. K. Schindler, Reviews of Geophysics 7 (1–2), 51 (1969).
  8. R.C. Davidson and N.T. Gladd, Phys. Fluids. 18, 1327 (1975).
  9. N.T. Gladd, Plasma Phys. 18, 27 (1976).
  10. P.C. Liewer and R.C. Davidson, Nucl. Fusion 17, 85 (1977).
  11. B.H. Ripin, E.A. McLean, C.K. Manka, C. Pawley, J.A. Stamper, T.A. Peyser, A.N. Mostovych, J. Grun, A.B. Hassam, and J. Huba, Phys. Rev. Lett. 59, 2299 (1987).
  12. S. Okada, K. Sato and T. Sekiguchi, Jpn. J. Apl. Phys. 20, 157 (1981).
  13. A.G. Berezutsky, A.A. Chibranov, M.A. Efimov, V.G. Posukh, M.S. Rumenskikh, P.A. Trushin, I.B. Miroshnichenko, Yu.P. Zakharov, V.A. Terekhin and I.F. Shaikhislamov, Plasma Phys. Rep. 49, 351 (2023).
  14. Yu.P. Zakharov, A.M. Orishich, A.G. Ponomarenko and I.F. Shaikhislamov, in Proc. 10th European School Plasma Physics (Tbilisi). 184 (1990).
  15. S.I. Vainshtein, S.M. Chitre and A.V. Olinto, Phys. Rev. E 61, 4422 (2000).
  16. A.M. Bergel’son, Yu.P. Raizer and S.T. Surzhikov, J. Appl. Mech. Tech. Phys. 32, 316 (1991).
  17. А.Collette and W. Gekelman, Phys. Rev. Lett. 105, 195003 (2010).
  18. А.Collette and W. Gekelman, Phys. Plasmas 18, 055705 (2011).
  19. C.P. Escoubet, M. Fehringer and M. Goldstein, Ann. Geophys. 19, 1197 (2001).
  20. J.L. Burch, T.E. Moore, R.B. Torbert and R.B. Giles, Space Sci. Rev. 199, 5 (2016).
  21. А.М. Оришич, В.Г. Посух, В.Н. Снытников Мощные СO2-лазеры для плазменных экспериментов и технологии (Сборник ИТПМ, Новосибирск, 56, 1986).
  22. Ю.П. Захаров, А.М. Оришич и А.Г. Пономаренко Лазерная плазма и лабораторное моделирование нестационарных космических процессов (ИТПМ СО АН СССР, Новосибирск, ответственный редактор Н. Г. Преображенский, 219, 1988).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental setup. 1 — vacuum chamber; 2 — solenoid for generating a magnetic field; 3 — laser beams entering the chamber; 4 — target; 5 — laser plasma cloud; M1, M2, RM1, RM2 — magnetic/electric probes.

Download (175KB)
3. Fig. 2. Oscillograms of plasma density (a) and oscillograms of the perturbation of the main magnetic field component δBz (b) at different radial distances from the target. The external magnetic field was B0 = – 200 G. The irradiation of the target by laser radiation starts at T = 0.

Download (229KB)
4. Fig. 3. Profiles of the diamagnetic cavity in the formation phase (a) and the collapse phase (b). Time T is measured from the start of the laser plasma expansion.

Download (218KB)
5. Fig. 4. R–T diagrams of plasma front motion and reverse plasma flow (black lines), expansion and collapse of the magnetic cavity (red lines) with calculated average velocity.

Download (144KB)
6. Fig. 5. Proposed geometry of fields and currents arising during the expansion of laser plasma into a uniform magnetic field. Shown are the distortion of the leading “plug-like” field and the quadrupole structure of the Hall field Bφ (By in Cartesian coordinates). In this case, its direction corresponds to generation due to the current forming the cavity, ∂Bφ/∂t ~ – (c/4 πen) Bz ∂Jφ/∂z, and the electron drift velocity Ve = – J/ne, regardless of the sign of B0, is directed toward the target in the X–Y equatorial plane and away from the target near the Z axis.

Download (109KB)
7. Fig. 6. Magnetic probe signals. Red curves — derivative of the perturbation of the main magnetic field component BZ. Black curves — value of the azimuthal component Bφ (the presumed Hall field component during the diamagnetic cavity collapse phase is circled). Data are given for each quadrant at an external magnetic field of B0 = +200 G.

Download (449KB)
8. Fig. 7. Same as in Fig. 6 but with an external magnetic field of opposite sign, B0 = – 200 G.

Download (403KB)
9. Fig. 8. Spatial configuration of azimuthal fields (black), derivative of the main magnetic field component oriented along the Z axis (red), and current density measured by a Langmuir probe (blue) in an external magnetic field B0 = – 200 G for one quadrant in the ZX meridional plane. Each cell of the table corresponds to a specific measurement point relative to the target.

Download (698KB)
10. Fig. 9. Spatial distribution of the By component at the cavity front in the collapse phase in the ZX meridional plane with reversed B0 = – 200 G (a) and direct B0 = + 200 G (b) direction of the leading field. The position of each point in the figure corresponds to the measurement point relative to the target, and the color indicates the direction of the By field (red — toward the observer, blue — away from the observer).

Download (297KB)

Copyright (c) 2024 The Russian Academy of Sciences