REGISTRATION OF BURSTS OF GRAVITY-GRADIENT AND NEUTRINO BACKGROUND BY UNDERGROUND DETECTORS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The problem of registration of collapsing stars in the Galaxy is considered using two instruments: the optoacoustic gravitational detector OGRAN and the neutrino telescope BUST, located in the underground laboratories of the BNO INR RAS. An algorithm for joint data processing on the experience of registration of the SN1987A event is presented. The proposed method is illustrated by the current output signals of these instruments.

About the authors

V. N. Rudenko

Sternberg State Astronomical Institute, Lomonosov Moscow State University

Email: valentin.rudenko@gmail.com
Moscow, Russia

Yu. M. Gavrilyuk

Nuclear Research Institute RAS, Baksan Neutrino Observatory

Kabardino-Balkarian Republic, Russia

A. V. Gusev

Sternberg State Astronomical Institute, Lomonosov Moscow State University

Moscow, Russia

S. I. Oreshkin

Sternberg State Astronomical Institute, Lomonosov Moscow State University

Email: sioresh@yahoo.com
Moscow, Russia

S. M. Popov

Sternberg State Astronomical Institute, Lomonosov Moscow State University

Moscow, Russia

N. L. Kvashnin

Laser Physics Institute SB RAS

Novosybirsk, Russia

A. A. Lugovoy

Laser Physics Institute SB RAS

Novosybirsk, Russia

References

  1. B.P. Abbott, et al., Phys. Rev. Lett. 116, 061102 (2016).
  2. B.P. Abbott, et al., Phys. Rev. Lett. 118, 221101 (2017).
  3. B.P. Abbott, et al., Phys. Rev. Lett. 119, 141101 (2017).
  4. B.P. Abbott, et al. Phys. Rev. Lett. 119, 161101 (2017).
  5. A. von Kienlin, C. Meegan and A. Goldstein, GRB Coordinates Network, Circular Service 21520, 1 (2017).
  6. V. Savchenko et al., Astrophys. J. 848(2), L15 (2017).
  7. M. Punturo et al., Classical and Quantum Gravity 27(8):084007 (Apr 2010),
  8. Astro2020 Science White Paper. Gravitational wave astronomy with LIGO and similar detectors in the next decade. arXiv:1904.03187v1 [gr-qc] 5 Apr 2019.
  9. R.X. Adhikari, Rev. Mod. Phys. 86, 121 (Feb 2014),
  10. Y. Novoseltsev, M. Boliev, V. Volchenko, et al, J. Exp. Theor. Phys. 125(1), 73–79 (2017).
  11. Y. Novoseltsev, I. Dzaparova, Kochkarov, et al., Neutrino Burst Monitoring in Our Galaxy. J. Exp. Theor. Phys. 134, 390–398 (2022).
  12. W. Baade, F. Zwicky, Proceedings of the National Academy of Science 20, 254 (1934),
  13. G.S. Bisnovatyi-Kogan, V.S. Imshennik, D.K. Nadyozin et al. Astrophysics and Space Science 35, 23–41 (1975).
  14. M.B. Пружинская Сверхновые звезды, гамма-велигерка и ускорение расширение Вселенной (sai. msu.ru > dissovet/prizhinskaya_thesis.pdf).
  15. V.N. Rudenko, Yu.M. Gavrilyuk, A.V. Gusev, et al, International Journal of Modern Physics A 35, Nos. 2 & 3, 2040007 (2020).
  16. S.N. Bagaev, L.B. Bezrukov, N.L. Kvashnin, V.A. Krysanov, S.I. Oreshkin, A.M. Motylev, S.M. Popov, V.N. Rudenko, A.A. Samoilenko, M.N. Skvortsov, et al. Rev. Sci. Instrum. 85, 065114 (2014).
  17. V.N. Rudenko, Physics–Uspekhi 60, 830–842 (2017).
  18. V. Rudenko, N. Kvashnin, A. Lugovoi, S. Oreshkin, S. Popov, A. Samoylenko, M. Skvortsov, I. Yudin, Setup. Phys. At. Nucl. 83, 1682–1690 (2020).
  19. V.N. Rudenko, V.A. Silin, A.N. Tsepkov, Astronomy Reports 56, № 8, 638–652 (2012).
  20. B.H. Руденко, A.B. Гусев, A.B. Сердобольский, Г. Пиццелла, Измерительная техника № 10, 3–7 (2004).
  21. S. Andrusenko, Y. Gavriluk, A. Gusev et al., Universe 8(9), 446 (2022).
  22. H.H. Чугай Земля и Вселенная (M., Наука, № 2, 22–30, 1989).
  23. E. Amaldi et al., Europhys. Lett. 3 1325 (1987).
  24. M. Aglietta, A. Castellina, W. Fulgione et al., Nuovo Cimento C 14, 171 (1991).
  25. C.A. Dickson, B.F. Schutz, Phys. Rev. D 51 2644 (1995).
  26. V.N. Rudenko, A.V. Gusev, V.K. Kravchuk et al., JETP 91, № 5, 845–858 (2000).
  27. Ю.Н. Ерошенко, Е.О. Бабичев, В.И. Докучаев et al., ЖЭТФ 155, № 4, 702–710 (2019).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences