SECOND DEGREE LOCAL INTEGRAL FOR ROTATING SYSTEMS. PART II

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The investigation of the existence of the quadratic local integral in stationary two-dimensional potential fields, initiated in the first part of the work, is ongoing. New mathematical relations are proposed, enhancing the understanding of the structure of functions describing the behavior of potential fields with arbitrary mass distributions. The rotation of the coordinate system is employed to simplify the equations and emphasize key features of the functional dependencies. Particular attention is given to arbitrary functions defining the potential and its derivatives under specific conditions. Their properties and possible solutions are analyzed. In addition, linear differential equations with polynomial and periodic solutions are studied. As a result of the work, theoretical results are formulated, which can be used for further analysis of quadratic integrals and for clarifying the differences between polynomials and other types of functions in broader mathematical models. The work is partially based on a talk presented at the Modern Stellar Astronomy 2024 conference.

Авторлар туралы

F. Shamshiev

National University of Uzbekistan named after Mirzo Ulugbek

Email: shamshiyev_f@nuu.uz
Tashkent, Uzbekistan

Әдебиет тізімі

  1. Ф.Т. Шамшаев, Астрон. журн. 102(5), 435 (2025).
  2. Г.Г. Кузьмин, Астрон. журн. 33, 27 (1956).
  3. P.O. Vandervoort, Astrophys. J. 232, 91 (1979).
  4. G. Contopoulos and P.O. Vandervoort, Astrophys. J. 389, 118 (1992).
  5. B. Chauvineau, Celest. Mech. Dyn. Astron. 51(4), 363 (1991).
  6. В.А. Антонов, Вестн. СПбГУ. Сер. 1: Математика. Механика. Астрономия № 19, 97 (1981).
  7. V.A. Antonov and F.T. Shamshiev, Celest. Mech. Dyn. Astron. 56(3), 451 (1993).
  8. F.T. Shamshiev, Astron. Astrophys. Trans. 7(4), 269 (1995).
  9. F.T. Shamshiev, J. Korean Astron. Soc. 29, 72 (1996).
  10. F.T. Shamshiev, in Astronomy at the Epoch of Multimessenger Studies, Proc. All-Russian Conference, Moscow, Russia, 2021, edited by A.M. Cherepashchuk (M.: Janus-K, 2021), p. 457.
  11. А.Д. Полянин, В.Ф. Зайцев, А.И. Журов, Методы решения нелинейных уравнений математической физики и механики (М.: ФИЗМТЛИТ, 2005).
  12. И.А. Мальцев, Линейная алгебра. Уч. пособие, 2-е изд-е (Санкт-Петербург: Изд-во «Лань», 2010).
  13. А.Н. Коммозоров, С.В. Фомин, Элементы теории функций и функционального анализа. 7-е изд-е (М.: ФИЗМАТЛИТ, 2009).
  14. А.Н. Коммозоров, В.И. Арнольд, Ю.П. Морозов, Основы теории динамических систем (М.: Наука, 1978).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025