ON DETECTION OF COROTATING REGIONS OF INTERACTION OF SOLAR WIND FLOWS BASED ON MONITORING DATA OF INTERPLANETARY SCINTILLATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A model was proposed for corotating interaction regions of multispeed solar wind flows including a region with a reduced level of small-scale turbulence in front of the compressed part. This model is a development of the previously proposed model for the leading part of the interaction region. Dynamic two-dimensional maps of the distribution of the interplanetary scintillation level adapted to observations on the BSA LPI radio telescope have been calculated based on the model. As an example, an event related to a magnetic storm on April 16–17, 2024 was considered. A comparison of model calculations with observational data was carried out, which confirmed the previously made assumption that the scintillation attenuation at night before the arrival of a disturbance to the Earth is associated with an area of reduced small-scale turbulence. In general, the qualitative model calculations are in good agreement with the observational data.

Sobre autores

V. Lukmanov

Pushchino Radio Astronomy Observatory, Lebedev Physical Institute of the RAS

Email: lukmanov@prao.ru
Pushchino, Russia

I. Chashei

Pushchino Radio Astronomy Observatory, Lebedev Physical Institute of the RAS

Pushchino, Russia

S. Tyul'bashev

Pushchino Radio Astronomy Observatory, Lebedev Physical Institute of the RAS

Pushchino, Russia

I. Subaev

Pushchino Radio Astronomy Observatory, Lebedev Physical Institute of the RAS

Pushchino, Russia

Bibliografia

  1. M.J. Owens, H.E. Spence, S. McGregor et al., Space Weather 6, S08001 (2008).
  2. J. Hinterreiter, J. Magdalenic, M. Temmer et al., Solar Physics 294, 170 (2019).
  3. E. Samara, R.F. Pinto, J. Magdalenic et al., Astron. and Astrophys. 648, A35 (2021).
  4. E. Samara, J. Magdalenic, L. Rodriguez et al., Astron. and Astrophys. 662, A68 (2022).
  5. A. Hewish, P.E. Scott, D. Wills, Nature 203, 1214 (1964).
  6. S.J. Tappin, Planetary and Space Science 34, 93 (1986).
  7. H.B. Hauei, C.A. Tronbäuwee, IO.B. Писанко, Метеорология и гидрология № 3, 28 (2021).
  8. H.B. Hauei, C.A. Tronbäuwee, H.A. Cyбаев, A.H. Чернышова, Астрон. Журн. 96, 407 (2019).
  9. H.B. Hauei, T.O. Лебедева, C.A. Tronbäuwee, H.A. Cyбаев, Астрон. Журн. 97, 73 (2020).
  10. H.B. Hauei, T.O. Лебедева, C.A. Tronbäuwee, H.A. Cyбаев, Астрон. Журн. 98, 949 (2021).
  11. H.A. Cyбаев, C.A. Tronbäuwee, H.B. Hauei, Кратк. сообщ. по физ., № 6, 50 (2021).
  12. D.B. Wexler, W.B. Manchester, L.K. Jian, et al., Astrophys. J. 955, 90, 1–13 (2023).
  13. B.P. Лукманов, H.B. Hauei, C.A. Tronbäuwee, H.A. Cyбаев, Астрон. Журн. 100, 546 (2023).
  14. B.H. Шишов, H.B. Hauei, B.B. Орешко, С.В. Лосвиненко, С.А. Топьбанцев, Н.А. Cyбаев, П.М. Саидский, В.Б. Лапшин, Р.Д. Дажекаманский, Астрон. Журн. 93, 1045 (2016).
  15. B.H. Власов, H.B. Hauei, B.H. Шишов, Т.Д. Шишова, Геомагн. аэрон. 19, 401 (1979).
  16. I.V. Chashei, V.R. Lukmanov, S.A. Tyul'bashev, M. Tokumaru, Solar Phys. 296, 63, 14 (2021).
  17. B.P. Лукманов, H.B. Hauei, C.A. Tronbäuwee, Астрон. Журн. 99, 160 (2022).
  18. D. Rodkin, V. Lukmanov, V. Slemzin, I. Chashei, Adv. in Space Res. (2024).
  19. H. Hayakawa, Yu. Ebihara, A. Mishev, Astrophys. J. 979, 49 (2025).
  20. B.V. Jackson, H.S. Yu, P.P. Hick, A. Buffington, M.M. Bisi, M. Tokumaru, J. Kim, S. Hong, B. Lee, J. Yi, J. Yun, Astrophys. J. Lett. 803, № 1, L1, 5 (2015).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025