PHASE BEHAVIOR OF FISH GELATIN–AGAR AQUEOUS MIXTURES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The interaction of fish gelatin and agar in the bulk of the aqueous phase with the formation of supramolecular protein–polysaccharide complexes was studied using spectroscopy (IR Fourier, UV), turbidimetry, quasi-elastic laser light scattering and scanning electron microscopy. The influence of the structure of gelatin (content of amino acid residues), the agar/fish gelatin w/w ratio Z and the medium (pH, ionic strength I) on the boundaries of the regions of stoichiometric and non-stoichiometric complexes formation, the size and ζ-potential of particles and, consequently, the phase behavior of the aqueous mixture (i.e., colloidal solution) of biopolymers was considered. Phase diagrams of aqueous mixtures of fish gelatin and agar were constructed in the coordinates Z – characteristic pH, as well as I – characteristic pH. The regions of different phase behavior of the systems are determined, such as a single-phase solution of non-complexed biopolymers, a dispersion of fish gelatin–agar complexes, the region of the beginning of the separation of coacerates from the dispersion, and the region of complete separation of the coacervate phase and supernatant. It is shown that the formation of fish gelatin–agar complexes affects the microstructure of gels formed during cooling of aqueous mixtures of biopolymers.

About the authors

N. G. Voron’ko

Murmansk Arctic University

Email: voronkong@mauniver.ru
Murmansk, Russia

T. D. Kuzina

Murmansk Arctic University

Email: email@example.com
Murmansk, Russia

D. S. Kolotova

Murmansk Arctic University

Email: email@example.com
Murmansk, Russia

Yu. A. Kuchina

Murmansk Arctic University

Email: email@example.com
Murmansk, Russia

Yu. F. Zuev

Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center", Russian Academy of Sciences

Email: email@example.com
Kazan, Russia

S. R. Derkach

Murmansk Arctic University

Email: email@example.com
Murmansk, Russia

References

  1. Калинина М.А., Вацадзе С.З. Коллоидная химия супрамолекулярных систем в современном ландшафте российской науки // Коллоидный журнал. 2022. Т. 84. № 5. С. 499–502. https://doi.org/10.31857/S0023291222600341
  2. Zueva O.S., Rukhlov V.S., Zuev Yu.F. Morphology of ionic micelles as studied by numerical solution of the Poisson equation // ACS Omega. 2022. V. 7. № 7. P. 6174–6183. https://doi.org/10.1021/acsomega.1c06665
  3. Миргалеев Г.М., Шилова С.В. Связывание флуоресцеина хитозаном и полиэлектролитным комплексом на его основе в водных растворах // Коллоидный журнал. 2024. Т. 86. №3. С. 379–389. https://doi.org/10.31857/S0023291224030074
  4. Деркач С.Р., Воронько Н.Г., Маклакова А.А., Кондратюк Ю.В. Реологические свойства гелей желатины с κ-каррагинаном: роль полисахарида // Коллоидный журнал. 2014. Т. 76. № 2. С. 164–170. http://doi.org/10.7868/S0023291214020025
  5. Pathak J., Rawat K., Priyadarshini E., Bohidar H.B. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding // Advances in Colloid and Interface Science. 2017. V. 250. P. 40–53.https://doi.org/10.1016/j.cis.2017.10.006
  6. Кокшаров С.А., Алеева С.В., Лепилова О.В., Кричевский Г.Е., Фидоровская Ю.С. Свойства гидроколлоидов альгината натрия при сорбционном связывании папаина // Коллоидный журнал. 2021. Т. 83. № 6. С. 560–675. https://doi.org/10.31857/S0023291221060070
  7. Кокшаров С.А., Лепилова О.В., Алеева С.В. и др. Влияние гидродинамических условий синтеза коллоидной системы альгинат натрия–папаин на сорбционные свойства биокомпозита // Коллоидный журнал. 2023. Т. 85. № 4. С. 511–525. https://doi.org/10.31857/S0023291223600244
  8. Turgeon S.L., Laneuville S.I. Protein + polysaccharide coacervates and complexes: From scientific back-ground to their application as functional ingredients in food products // In: Modern biopolymer science. Kasapis S., Norton I.T., Ubbink J.B. Eds. London: Academic Press. 2009. P. 327–363. http://doi.org/10.1016/B978-0-12-374195-0.00011-2
  9. Semenova, M. Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles // Current Opinion in Colloid & Interface Science. 2017. V. 28. P. 15–21. https://doi.org/10.1016/j.cocis.2016.12.003
  10. Antipin I.S., Alfimov M.V., Arslanov V.V., et al. Functional supramolecular systems: design and application // Russian Chemical Reviews. 2021. V. 90. № 8. P. 895–1107. https://doi.org/10.1070/rcr5011
  11. Li H., Wang T., Hu Y., Wu J., Van der Meeren P. Designing delivery systems for functional ingredients by protein/polysaccharide interactions // Trends in Food Science & Technology. 2022. V. 119. P. 272–287. https://doi.org/10.1016/j.tifs.2021.12.007
  12. Falsafi S.R., Rostamabadi H., Sambroska K., et al. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes // Pharmacological Research. 2022. V. 178. № 15. P. 106164. https://doi.org/10.1016/j.phrs.2022.106164
  13. Zhang L., Liang R., Li L. The interaction between anionic polysaccharides and legume protein and their influence mechanism on emulsion stability // Food Hydrocolloids. 2022. V. 131. P. 107814. https://doi.org/10.1016/j.foodhyd.2022.107814
  14. Cheng C., Tu Z., Wang H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: Phase behavior and structural properties // Food Research International. 2023. V. 167. P. 112652. http://doi.org/10.1016/j.foodres.2023.112652
  15. Xue H., Feng J., Tang Y,. et al. Research progress on the interaction of the polyphenol–protein–polysaccharide ternary systems // Chemical and Biological Technologies in Agriculture. 2024. V. 11. № 1. P. 95. https://doi.org/10.1186/s40538-024-00632-7
  16. Gentile L. Protein–polysaccharide interactions and aggregates in food formulations // Current Opinion in Colloid & Interface Science. 2020. V. 48. P. 18–27. https://doi.org/10.1016/j.cocis.2020.03.002
  17. Sun X., Wang H., Li S., et al. Maillard-type protein–polysaccharide conjugates and electrostatic protein–polysaccharide complexes as delivery vehicles for food bioactive ingredients: Formation, types, and applications // Gels. 2022. V. 8. № 2. P. 1–27. https://doi.org/10.3390/gels8020135
  18. Wang H., Lin X., Zhu J. et al. Encapsulation of lutein in gelatin type A/B-chitosan systems via tunable chains and bonds from tweens: Thermal stability, rheologic property and food 2D/3D printability // Food Research International. 2023. V. 173. № 1. P. 113392. http://doi.org/10.1016/j.foodres.2023.113392
  19. Xue J., Luo Y. Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: a comprehensive review on preparation methods and encapsulation mechanisms // Journal of Future Foods. 2023. V. 3. № 2. P. 99–114. https://doi.org/10.1016/j.jfutfo.2022.12.002
  20. Li Y., Cheng Z., Zhang J., et al. Effect of protein–polysaccharide hybrid gelator system on the material properties and 3D extrusion printability of mashed potatoes // Journal of Food Science. 2024. V. 89. № 4. P. 2347–2358. https://doi.org/10.1111/1750-3841.17003
  21. Razzak M.A., Kim M., Chung D. Elucidation of aqueous interactions between fish gelatin and sodium alginate // Carbohydrate polymers. 2016. V. 148. P. 181–188. https://doi.org/10.1016/j.carbpol.2016.04.035
  22. Phawaphuthanon N., Yu D., Ngamnikom P., Shin I.-S., Chung D. Effect of fish gelatin-sodium alginate interactions on foam formation and stability // Food Hydrocolloids. 2019. V. 88. P. 119–126. https://doi.org/10.1016/j.foodhyd.2018.09.041
  23. Zhang J., Du H., Ma N., et al. Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide // Food Science and Human Wellness. 2022. V. 12. № 1. P. 183–191. https://doi.org/10.1016/j.fshw.2022.07.006
  24. Kolotova D.S., Borovinskaya E.V., Bordiyan V.V., et al. Phase behavior of aqueous mixtures of sodium alginate with fish gelatin: Effects of pH and ionic strength // Polymers. 2023. V. 15. № 10. P. 2253. https://doi.org/10.3390/polym15102253
  25. Tong L., Kang X., Fang Q., et al. Rheological properties and interactions of fish gelatin‐κ‐carrageenan polyelectrolyte hydrogels: The effects of salt // Journal of Texture Studies. 2021. V. 53. № 1. P. 122–132. https://doi.org/10.1111/jtxs.12624
  26. Voron’ko N.G., Derkach S.R., Vovk M.A., Tolstoy P.M. Formation of κ-carrageenan–gelatin polyelectrolyte complexes studied by 1H NMR, UV spectroscopy and kinematic viscosity measurements // Carbohydrate Polymers. 2016. V. 151. P. 1152–1161. https://doi.org/10.1016/j.carbpol.2016.06.060
  27. Boral S., Bohidar H.B. Effect of ionic strength on surface-selective patch bindung-induced phase separation and coacervation in similarly charged gelatin–agar molecular systems // The Journal of Physical Chemistry. 2010. V. 114. № 37. P. 12027–12035. https://doi.org/10.1021/jp105431t
  28. Pathak J., Rawat K., Bohidar H.B. Surface patch binding and mesophase separation in biopolymeric polyelectrolyte–polyampholyte solutions // International Journal of Biological Macromolecules. 2014. V. 63. P. 29–37. http://doi.org/10.1016/j.ijbiomac.2013.10.020
  29. Roy S., Rhim J.-W. Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications // Colloids and Surfaces A. 2021. V. 627. P. 127220. http://doi.org/10.1016/j.colsurfa.2021.127220
  30. Du L., Ru Y., Weng H., et al. Agar-gelatin Maillard conjugates used for Pickering emulsion stabilization // Carbohydrate Polymers. 2024. V. 340. № 4. P. 122293. https://doi.org/10.1016/j.carbpol.2024.122293
  31. Mendoza-Wilson A.M., Balandran-Quintana R.R., Azamar-Barrios J.A., Cabellos J.L. Effects of adding sorghum procyanidins on the structure, molecular interactions, and thermal properties of agar-glycerol-gelatin films // Journal of Computational Biophysics and Chemistry. 2024. V. 23. № 5. P. 605–622. https://doi.org/10.1142/S2737416524500078
  32. Isik I., Yenipazar H., Saygün A., et al. Aloe vera oil-added agar gelatin edible films for kashar cheese packaging // ACS Omega. 2023. V. 8. № 21. P. 18516–18522. https://doi.org/10.1021/acsomega.3c00147
  33. Fathiraja P., Gopalrajan S., Kumar K., Obaiah M.C. Augmentation of bioactivity with addition of clove essential oil into fish scale gelatin, agar and chitosan composite film and biodegradable features // Polymer Bulletin. 2024. V. 81. № 6. P. 5329–5357. https://doi.org/10.1007/s00289-023-04961-9
  34. Boonprab K., Chirapat A., Effendy W.N.A. Edible-algae base composite film containing gelatin for food packaging from macroalgae, Gracilaroid (Gracilaria fisheri) // Journal of The Science of Food and Agriculture. 2024. V. 104. № 11. P. 6987–7001. https://doi.org/10.1002/jsfa.13531
  35. Kim H.-J., Roy S., Rhim J.-W. Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp // Food Hydrocolloids. 2022. V. 124. P. 107294. https://doi.org/10.1016/j.foodhyd.2021.107294
  36. How Y. H., Wong L. X., Kong I., Nyam K.L., Pui L.P. Development of multilayered pH-sensitive chitosan–gelatin–agar intelligent film incorporated with roselle anthocyanin extract for monitoring of the freshness of snapper fish // Food and Bioprocess Technology. 2024. V. 17. № 11. P. 4177–4194. https://doi.org/10.1007/s11947-024-03377-1
  37. Garcia-Orue I., Santos-Vizcaino E., Uranga J., et al. Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing // Journal of Materials Chemistry B. 2023. V. 11. № 29. P. 6896–6910. http://doi.org/10.1039/D2TB02796H
  38. Razuidi D.A.A., Mahat M., Sofian Z.M., et al. Synthesis and characterization of porous, electro-conductive chitosan–gelatin–agar-based PEDOT: PSS scaffolds for potential use in tissue engineering // Polymers. 2021. V. 13. № 17. P. 2901. https://doi.org/10.3390/polym13172901
  39. Zhou X., Yu J., Qian S., Chen Y. Study on texture detection of gelatin-agar composite gel based on bionic chewing // Journal of Food Measurement and Characterization. 2023. V. 17. № 2. P. 5093–5102. https://doi.org/10.1007/s11694-023-02016-1
  40. González-Maldonado J., Ramírez-Valverde G., Rangel-Santos R., et al. Ram semen quality after supplementation with gelatin, agar or alginate prior to cooling storage // Reproduction in Domestic Animals. 2023. V. 58. № 10. P. 1487–1493. https://doi.org/10.1111/rda.14463
  41. Haug I.J., Draget K.I. Gelatin // In: Handbook of hydrocolloids. Phillips G.O., Williams P.A. Eds. Boca Raton, Boston, New York, Washington DC: CRC Press. 2009. P. 142–163. https://doi.org/10.1533/9781845695873.142
  42. Derkach S.R., Voron’ko N.G., Kuchina Yu.A., Kolotova D.S. Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies // Polymers. 2020. V. 12. № 12. P. 3051. http://doi.org/10.3390/polym12123051
  43. Joy J.M., Padmaprakashan A., Pradeep A., et al. A review on fish skin-derived gelatin: elucidating the gelatin peptides – preparation, bioactivity, mechanistic insights, and strategies for stability improvement // Foods. 2024. V. 13. № 17. P. 2793. https://doi.org/10.3390/foods13172793
  44. Derkach S.R., Voron’ko N.G., Kuchina Yu.A., et al. Rheological properties of fish and mammalian gelatin hydrogels as basis for potential practical formulation // Gels. 2024. V. 10. № 8. P. 486. https://doi.org/10.3390/gels10080486
  45. Oliveira V. de M., Assis C.R.D., Costa B. de A.M., et al. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products // Journal of Molecular Structure. 2021. V. 1224. P. 129023. http://doi.org/10.1016/j.molstruc.2020.129023
  46. Da Silva C.G., Rodrigues A.S., Lima A.C., et al. Gelatin extracted from jundiá skin (Rhamdia quelen): An alternative to the discarded by-product // Food Research International. 2022. V. 161. P. 111829. http://doi.org/10.1016/j.foodres.2022.111829
  47. Shi X.-D., Huang J.-J., Wu J.-L., et al. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: A review // Food Hydrocolloids. 2021. V. 122. № 15. P. 107106. https://doi.org/10.1016/j.foodhyd.2021.107106
  48. Armisen R., Galatas F. Agar // In: Handbook of hydrocolloids. Phillips G.O., Williams P.A. Eds. Boca Raton, Boston, New York, Washington DC: CRC Press. 2009. P. 82–107. https://doi.org/10.1533/9781845695873.82
  49. Usov A.I. Polysaccharides of the red algae // Advances in carbohydrate chemistry and biochemistry. 2011. V. 65. P. 115–217. https://doi.org/10.1016/b978-0-12-385520-6.00004-2
  50. Muthukumar J., Chidambaram R., Sukumaran S. Sulfated polysaccharides and its commercial applications in food industries–a review // Journal of Food Science and Technology. 2020. V. 58. № 7. P. 2453–2466. https://doi.org/10.1007/s13197-020-04837-0
  51. Nishinari K., Fang Y. Relation between structure and rheological/thermal properties of agar / A mini-review on the effect of alkali treatment and the role of agaropectin // Food Structure. 2017. V. 13. P. 24–34. http://doi.org/10.1016/j.foostr.2016.10.003
  52. Rochas C., Lahaye M., Yaphe W. Sulphate content of carrageenan and agar determined by infrared spectroscopy // Botanica Marina. 1986. V. XXIX. P. 335–340. https://doi.org/10.1515/botm.1986.29.4.335
  53. Derkach S.R., Kuchina Yu.A., Baryshnikov A.V., Kolotova D.S., & Voron’ko N.G. Tailoring cod gelatin structure and physical properties with acid and alkaline extraction // Polymers. 2019. V. 11. № 10. P. 1724. http://doi.org/10.3390/polym11101724
  54. Zuev Yu.F., Derkach S.R., Bogdanova L.R., et al. Underused marine resources: Sudden properties of cod skin gelatin gel // Gels. 2023. V. 9. № 12. P. 990. https://doi.org/10.3390/gels9120990
  55. Derkach S.R., Kolotova D.S., Voron’ko N.G., Obluchinskaya E.D., Malkin A.Ya. Rheological properties of fish gelatin modified with Sodium alginate // Polymers. 2021. V. 13. № 5. P. 743. http://doi.org/10.3390/polym13050743
  56. Derkach S.R., Voron’ko N.G., Sokolan N.I., Kolotova D.S., Kuchina Yu.A. Interactions between gelatin and sodium alginate: UV and FTIR studies // Journal of Dispersion Science and Technology. 2020. V. 41. № 5. P. 690–698. http://doi.org/10.1080/01932691.2019.1611437
  57. Handbook of biochemistry and molecular biology. Lundblad R.L., Macdonald F.M. Eds. Boca Raton. Boston.London. New York: CRC Press. 2010. https://doi.org/10.1201/b21846
  58. Handbook of chemistry and physics. Lide D.R. Ed. Boca Raton: CRC Press LLC. 2004.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences