LUMINESCENT NANOPARTICLES OF POLYELECTROLYTE COMPLEX OF CHITOSAN WITH CARRAGEENAN AS PERSPECTIVE MULTIFUNCTIONAL VANCOMYCIN DELIVERY SYSTEMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Nanoparticles of a polyelectrolyte complex of chitosan and κ-carrageenan containing core–shell quantum dots of CdS/ZnS were obtained and characterized as potential biocompatible luminescent delivery systems for the antibiotic vancomycin with an encapsulation efficiency of 95–97%. Quantum dots were obtained by a colloidal synthesis method and hydrophilized with mercaptopropionic acid. The effect of vancomycin encapsulated in particles of the polyelectrolyte complex on the luminescent properties of CdS/ZnS quantum dots was studied. The capabilities of the synthesized quantum dots as analytical nanosensors for determine the incorporation and release of vancomycin from the developed carriers based on their luminescence quenching were demonstrated. The binding of vancomycin to albumin as a model of blood protein was studied, the composition of the complex ([vancomycin]: [albumin] = 1.0 : 2.0) and its stability constant (βκ = 6.0 ⋅ 104 M−1) were determined. Analysis of kinetic data on the release of vancomycin from polymer carriers under in vitro conditions into albumin and tris-buffer solutions within the framework of the Korsmeyer–Peppas mathematical model showed that the release of the antibiotic is controlled by both diffusion and relaxation of the polymer matrix.

About the authors

S. V. Shilova

Kazan National Research Technological University

Email: s_shilova74@mail.ru
Kazan, Russia

G. M. Mirgaleev

Kazan National Research Technological University

Email: email@example.com
Kazan, Russia

D. O. Sagdeev

Kazan National Research Technological University

Email: email@example.com
Kazan, Russia

Y. G. Galyametdinov

Kazan National Research Technological University

Email: email@example.com
Kazan, Russia

References

  1. Kalia M. Personalized oncology: recent advances and future challenges // Metabolism. 2013. V. 62. S11–S14. https://doi.org/10.1016/j.metabol.2012.08.016
  2. Jain T., Kumar S., Dutta P.K. Teranostics: A way of modern diagnostics and the role of chitosan // J. Mol. Genet. Med. 2015. V. 9. № 1. P. e1000159. https://doi.org/10.4172/1747-0862.1000159
  3. Muthu M.S., Leong D.T., Mei L., Feng S.S. Nanotheranostics application and further development of nanomedicine strategies for advanced theranostics // Theranostics. 2014. V. 4. № 6. P. 660–677. https://doi.org/10.7150/thno.8698
  4. Galeeva A.I., Selivanova N.M., Galyametdinov Yu.G. Wetting and adhesive properties of biopolymer-based organized condensed phases as drug delivery systems // Liq. Cryst. and their Appl. 2023. V. 23. № 4. P. 38–48. (in Russian). https://doi.org/10.18083/LCAppl.2023.4.38
  5. Wu X., Yang H., Yang W., Chen X., Gao J., Gong X., Wang H., Duan Y., Wei D., Chang J. Nanoparticle-based diagnostic and therapeutic systems for brain tumors // J. Mater. Chem. B. 2019. V. 7. № 31. P. 4734–4750. https://doi.org/10.1039/C9TB00860H
  6. Zhao D., Yu S., Sun B., Gao S., Guo S., Zhao K. Biomedical applications of chitosan and its derivative nanoparticles // Polymers. 2018. V. 10. № 4. P. 462–479. https://doi.org/10.3390/polym10040462
  7. Victor R.S., Santos A.M.C., Sousa B.V., Neves G.A., Santana L.N.L., Menezes R.R. A review on Chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment // Materials. 2020. V. 13. № 21. P. 4995. https://doi.org/10.3390/ma13214995
  8. Yuao Wu, Run Zhang, Huong D. N. Tran, Nyoman D. Kurniawan, Shehzahdi S. Moonshi, Andrew K. Whittake, Hang T. Ta. Chitosan nanococktails containing both ceria and superparamagnetic iron oxide nanoparticles for reactive oxygen species-related theranostics // ACS Appl. Nano Mater. 2021. V. 4. № 4. P. 3604–3618. https://doi.org/10.1021/acsanm.1c00141
  9. Kou S.G., Peters L., Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms // Carbohydr. Polym. 2022. № 282. P. 119132. https://doi.org/10.1016/j.carbpol.2022.119132
  10. Краюхина М.А., Самойлова Н.А., Ямсков И.А. Полиэлектролитные комплексы хитозана: формирование, свойства и применение // Успехи химии. 2008. Т. 77. № 9. С. 854−869.
  11. Миргалеев Г.М., Шилова С.В. Связывание флуоресцеина хитозаном и полиэлектролитным комплексом на его основе в водных растворах // Коллоидный журнал. 2024. Т. 86. №3. С. 379−389. https://doi.org/10.31857/S0023291224030074
  12. Quadrado R.F.N., Fajardo A.R. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems // Arab. J. Chem. 2020. V. 13. № 1. P. 2183−2194. https://doi.org/10.1016/j.arabjc.2018.04.004
  13. Shilova S.V., Mirgaleev G.M., Romanova K.A., Galyametdinov Y.G. Alginate/chitosan hydrogels as perspective transport systems for cefotaxime // Biopolymers. 2023. V. 114. № 10. P. e23555. https://doi.org/10.1002/bip.23555
  14. Mahdavinia G.R., Mosallanezhad A., Soleymani M., Sabzi M. Magneticand pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug // Int. J. Biol. Macromol. 2017. V. 1. P. 209–217. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.012
  15. Kumar R., Najda A., Duhan J.S., Kumar B., Chawla P., Klepacka J., Malawski S., Kumar Sadh P., Poonia A.K. Assessment of antifungal efficacy and release behavior of fungicide-loaded chitosan-carrageenan nanoparticles against phytopathogenic fungi // Polymers. 2022. V. 14. P. 41. https://doi.org/10.3390/polym14010041
  16. Щипунов Ю.А. Структура полиэлектролитных комплексов на примере гидрогелей хитозана с лямбда-каррагинаном // Высокомолек. соед. Сер. А. 2020. Т. 62. № 1. С. 57–64. https://doi.org/10.31857/S2308112020010101
  17. Olanrewaju A. Aladesuyi, Thabang C. Lebepe, Rodney Maluleke, Oluwatobi S. Oluwafemi. Biological applications of ternary quantum dots: A review // Nanotech. Rev. 2022. V. 11. № 1. P. 2304–2319. https://doi.org/10.1515/ntrev-2022-0136
  18. Bezrukov A.N., Galeeva A.I., Krupin A.S., Galyametdinov Y.G. Molecular orientation behavior of lyotropic liquid crystal–carbon dot hybrids in microfluidic confinement // Int. J. Mol. Sci. 2024. V. 25. №10. P. 5520. https://doi.org/10.3390/ijms25105520
  19. Elugoke S.E., Uwaya G.E., Quadri T.W., Ebenso E.E. Carbon quantum dots: basics, properties, and fundamentals // Carbon Dots: Recent Developments and Future Perspectives. 2024. Chapter 1. P. 3–42. https://doi.org/10.1021/bk-2024-1465.ch001
  20. Zhao J., Wu J. Preparation and characterization of the fluorescent chitosan nanoparticle probe // Chin. J. Anal. Chem. 2006. V. 34. № 11. P. 1555–1559. https://doi.org/10.1016/S1872-2040(07)60015-2
  21. Derfus A.M., Chan W.C., Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots // Nano Letters. 2004. V. 4. № 1. P. 11–18. https://doi.org/10.1021/nl0347334
  22. Cunha B.A. Vancomycin // Med. Clin. N. Am. 1995. V. 79. № 4. P. 817–831. https://doi.org/10.1016/S0025-7125(16)30041-4
  23. Elyasi S., Khalili H., Dashti-Khavidak S., Mohammadpour A. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review // Eur. J. Clin. Pharmacol. 2012. V. 68. P. 1243–1255. https://doi.org/10.1007/s00228-012-1259-9
  24. Bruniera F.R., Ferreira F.M., Saviolli L.R.M., Bacci M.R., Feder D., Pedreira M., Peterlini M.A.S., Azzalis L., Junqueira V.B.C., Fonseca F.L. The use of vancomycin with its therapeutic and adverse effects: A review // Eur. Rev. Med. Pharm. Sci. 2015. V. 19. P. 694–700.
  25. Shilova S.V., Sagdeev D.O., Mirgaleev G.M., Romanova K.A., Galyametdinov Yu.G. Novel nanosensors represented by CdS/ZnS quantum dots doped with manganese (II) ions for detection of vancomycin // Physica Scripta. 2025. V. 100. № 3. P. 035906. https://doi.org/10.1088/1402-4896/adadaa
  26. Pfaller M., Krogstad D., Granich G., Murray P. Laboratory evaluation of five assay methods for vancomycin: Bioassay, high-pressure liquid chromatography, fluorescence polarization immunoassay, radioimmunoassay, and fluorescence immunoassay // J. Clin. Microbiol. 1984. V. 20. № 3. P. 311–316. https://doi.org/10.1128/jcm.20.3.311-316.1984
  27. Nascimento P.A.D., Kogawa A.C., Salgado H.R.N. Current status of vancomycin analytical methods // J. AOAC Int. 2020. V. 103. № 3. P. 755–769. https://doi.org/10.1093/jaocint/qsz024
  28. Cheng X., Ma J., Su J. An Overview of analytical methodologies for determination of vancomycin in human plasma // Molecules. 2022. V. 27. № 21. P. 7319. https://doi.org/10.3390/molecules27217319
  29. Крупин С.В., Мягченков В.А., Третьякова А.Я., Вяселева Г.Я., Торсуев Д.М., Булидорова Г.В., Курмаева А.И., Коноплева А.А. Практикум по физикохимии растворов и дисперсий полимеров. Казань: Казан. гос. технол. ун-т. 2003. 154 с.
  30. Sagdeev D.O., Shamilov R.R., Galyametdinov Y.G. Quantum dots luminescent compounds with multimodal luminescence for fuel labeling // Physica Scripta. 2023. V. 98. № 10. P. 105101. https://doi.org/10.1088/1402-4896/acf3b3
  31. Галяметдинов Ю.Г., Крупин А.С., Сагдеев Д.О., Карякин М.Е., Шамилов Р.Р., Князев А.А. Люминесцентные композиты на основе жидкокристаллического комплекса европия (III) и квантовых точек CdSe/CdS/ZnS // Жидк. крист. и их практич. использ. 2022. Т. 22. № 1. С. 27–38. https://doi.org/10.18083/LCAppl.2022.1.27
  32. Zhou N., He C.X. An improved method of isomolar series by dual-wavelength spectrophotometry // Microchimica Acta. 1993. V. 111. № 4. P. 183–191. https://doi.org/10.1007/BF01245305
  33. Knowles C., Knowles A. Practical Absorption Spectrometry: Ultraviolet Spectrometry Group. Springer Science & Business Media, 2013.
  34. Tiwari A.K. Yadav H.P., Gupta M.K., Narayan R.J., Pandey P.C. Synthesis of vancomycin functionalized fluorescent gold nanoparticles and selective sensing of mercury (II) // Front. Chem. 2023. V. 11.P. 1238631. https://doi.org/10.3389/fchem.2023.1238631
  35. Liang W., Liu S., Liu Z., Li D., Wang L., Haо C., He Y. Electron transfer and fluorescence ‘‘turn-off’’ based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media // New J. Chem. 2015. V. 39. № 6. P. 4774–4782. https://doi.org/10.1039/c4nj01764a
  36. Motz R.N., Sun A.C., Lehnherr D., Ruccolo S. High-throughput determination of Stern-Volmer quenching constants for common photocatalysts and quenchers // ACS Org. Inorg. 2023. V. 3. № 5. P. 266−273. https://doi.org/10.1021/acsorginorgau.3c00019
  37. Crank J. The Mathematics of Diffusion. Oxford: Clarendon Press, 1975.
  38. Ritger P.L., Peppas N.A. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs // J. Control. Release. 1987. V. 5. № 1. P. 23–36. https://doi.org/10.1016/0168-3659(87)90034-4
  39. Petrova V.A., Orekhov A.S., Chernyakov D.D., Baklagina Yu.G., Romanov D.P., Kononova S.V., Volod’ko A.V., Ermak I.M., Klechkovskaya V.V., Skorik Yu.A. Preparation and analysis of multilayer composites based on polyelectrolyte complexes // Crystallogr. Rep. 2016. V. 61. P. 945–953. https://doi.org/10.1134/S1063774516060110
  40. Kononova S.V., Volod’ko A.V., Petrova V.A., Kruchinina E.V., Baklagina Y.G., Chusovitin E.A., Skorik Yu.A. Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan // Carbohydr. Polym. 2018. V. 181. P. 86–92. https://doi.org/10.1016/j.carbpol.2017.10.050
  41. Dubashynskaya N.V., Petrova V.A., Sgibnev A.V., Elokhovskiy V.Y., Cherkasova Y.I., Skorik Yu.A. Carrageenan/chitin nanowhiskers cryogels for vaginal delivery of metronidazole // Polymers. 2023. V. 15. № 10. P. 2362. https://doi.org/10.3390/polym15102362
  42. Patterson A. The scherrer formula for X-Ray particle size determination // Phys. Rev. 1939. V. 56. № 10. P. 978−982.https://doi.org/10.1103/PhysRev.56.978
  43. Li L., Chen D., Zhang Y., Deng Z., Ren X., Meng X., Tang F., Ren J., Zhang L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system // Nanotechnology. 2007. V. 18. № 40. P. 405102.https://doi.org/10.1088/0957-4484/18/40/405102
  44. Bern M., Sand K.M.K., Nilsen J., Sandlie I., Ander J.T. The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery // J. Controlled Release. 2015. V. 211. P. 144–162. http://doi.org/10.1016/j.jconrel.2015.06.006
  45. Иорданский А.Л., Заиков Г.Е., Берлин А.А. Диффузионная кинетика и гидролиз биоразлагаемых полимеров. Потеря массы и контроль высвобождения низкомолекулярных веществ // Вестн. Казанского технолог. ун-та. 2015. Т. 18. № 2. С. 81–87.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences