ФАЗОВОЕ СОСТОЯНИЕ ВОДНЫХ СМЕСЕЙ РЫБНЫЙ ЖЕЛАТИН–АГАР
- Авторы: Воронько Н.Г.1, Кузина Т.Д.1, Колотова Д.С.1, Кучина Ю.А.1, Зуев Ю.Ф.2, Деркач С.Р.1
-
Учреждения:
- Мурманский арктический университет
- Казанский институт биохимии и биофизики ФНЦ КазНЦ РАН
- Выпуск: Том 87, № 5 (2025)
- Страницы: 469-488
- Раздел: Статьи
- Статья получена: 02.12.2025
- Статья опубликована: 15.09.2025
- URL: https://gynecology.orscience.ru/0023-2912/article/view/697450
- DOI: https://doi.org/10.7868/S3034543X25050019
- ID: 697450
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Н. Г. Воронько
Мурманский арктический университет
Email: voronkong@mauniver.ru
Мурманск, Россия
Т. Д. Кузина
Мурманский арктический университет
Email: email@example.com
Мурманск, Россия
Д. С. Колотова
Мурманский арктический университет
Email: email@example.com
Мурманск, Россия
Ю. А. Кучина
Мурманский арктический университет
Email: email@example.com
Мурманск, Россия
Ю. Ф. Зуев
Казанский институт биохимии и биофизики ФНЦ КазНЦ РАН
Email: email@example.com
Казань, Россия
С. Р. Деркач
Мурманский арктический университет
Email: email@example.com
Мурманск, Россия
Список литературы
- Калинина М.А., Вацадзе С.З. Коллоидная химия супрамолекулярных систем в современном ландшафте российской науки // Коллоидный журнал. 2022. Т. 84. № 5. С. 499–502. https://doi.org/10.31857/S0023291222600341
- Zueva O.S., Rukhlov V.S., Zuev Yu.F. Morphology of ionic micelles as studied by numerical solution of the Poisson equation // ACS Omega. 2022. V. 7. № 7. P. 6174–6183. https://doi.org/10.1021/acsomega.1c06665
- Миргалеев Г.М., Шилова С.В. Связывание флуоресцеина хитозаном и полиэлектролитным комплексом на его основе в водных растворах // Коллоидный журнал. 2024. Т. 86. №3. С. 379–389. https://doi.org/10.31857/S0023291224030074
- Деркач С.Р., Воронько Н.Г., Маклакова А.А., Кондратюк Ю.В. Реологические свойства гелей желатины с κ-каррагинаном: роль полисахарида // Коллоидный журнал. 2014. Т. 76. № 2. С. 164–170. http://doi.org/10.7868/S0023291214020025
- Pathak J., Rawat K., Priyadarshini E., Bohidar H.B. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding // Advances in Colloid and Interface Science. 2017. V. 250. P. 40–53.https://doi.org/10.1016/j.cis.2017.10.006
- Кокшаров С.А., Алеева С.В., Лепилова О.В., Кричевский Г.Е., Фидоровская Ю.С. Свойства гидроколлоидов альгината натрия при сорбционном связывании папаина // Коллоидный журнал. 2021. Т. 83. № 6. С. 560–675. https://doi.org/10.31857/S0023291221060070
- Кокшаров С.А., Лепилова О.В., Алеева С.В. и др. Влияние гидродинамических условий синтеза коллоидной системы альгинат натрия–папаин на сорбционные свойства биокомпозита // Коллоидный журнал. 2023. Т. 85. № 4. С. 511–525. https://doi.org/10.31857/S0023291223600244
- Turgeon S.L., Laneuville S.I. Protein + polysaccharide coacervates and complexes: From scientific back-ground to their application as functional ingredients in food products // In: Modern biopolymer science. Kasapis S., Norton I.T., Ubbink J.B. Eds. London: Academic Press. 2009. P. 327–363. http://doi.org/10.1016/B978-0-12-374195-0.00011-2
- Semenova, M. Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles // Current Opinion in Colloid & Interface Science. 2017. V. 28. P. 15–21. https://doi.org/10.1016/j.cocis.2016.12.003
- Antipin I.S., Alfimov M.V., Arslanov V.V., et al. Functional supramolecular systems: design and application // Russian Chemical Reviews. 2021. V. 90. № 8. P. 895–1107. https://doi.org/10.1070/rcr5011
- Li H., Wang T., Hu Y., Wu J., Van der Meeren P. Designing delivery systems for functional ingredients by protein/polysaccharide interactions // Trends in Food Science & Technology. 2022. V. 119. P. 272–287. https://doi.org/10.1016/j.tifs.2021.12.007
- Falsafi S.R., Rostamabadi H., Sambroska K., et al. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes // Pharmacological Research. 2022. V. 178. № 15. P. 106164. https://doi.org/10.1016/j.phrs.2022.106164
- Zhang L., Liang R., Li L. The interaction between anionic polysaccharides and legume protein and their influence mechanism on emulsion stability // Food Hydrocolloids. 2022. V. 131. P. 107814. https://doi.org/10.1016/j.foodhyd.2022.107814
- Cheng C., Tu Z., Wang H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: Phase behavior and structural properties // Food Research International. 2023. V. 167. P. 112652. http://doi.org/10.1016/j.foodres.2023.112652
- Xue H., Feng J., Tang Y,. et al. Research progress on the interaction of the polyphenol–protein–polysaccharide ternary systems // Chemical and Biological Technologies in Agriculture. 2024. V. 11. № 1. P. 95. https://doi.org/10.1186/s40538-024-00632-7
- Gentile L. Protein–polysaccharide interactions and aggregates in food formulations // Current Opinion in Colloid & Interface Science. 2020. V. 48. P. 18–27. https://doi.org/10.1016/j.cocis.2020.03.002
- Sun X., Wang H., Li S., et al. Maillard-type protein–polysaccharide conjugates and electrostatic protein–polysaccharide complexes as delivery vehicles for food bioactive ingredients: Formation, types, and applications // Gels. 2022. V. 8. № 2. P. 1–27. https://doi.org/10.3390/gels8020135
- Wang H., Lin X., Zhu J. et al. Encapsulation of lutein in gelatin type A/B-chitosan systems via tunable chains and bonds from tweens: Thermal stability, rheologic property and food 2D/3D printability // Food Research International. 2023. V. 173. № 1. P. 113392. http://doi.org/10.1016/j.foodres.2023.113392
- Xue J., Luo Y. Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: a comprehensive review on preparation methods and encapsulation mechanisms // Journal of Future Foods. 2023. V. 3. № 2. P. 99–114. https://doi.org/10.1016/j.jfutfo.2022.12.002
- Li Y., Cheng Z., Zhang J., et al. Effect of protein–polysaccharide hybrid gelator system on the material properties and 3D extrusion printability of mashed potatoes // Journal of Food Science. 2024. V. 89. № 4. P. 2347–2358. https://doi.org/10.1111/1750-3841.17003
- Razzak M.A., Kim M., Chung D. Elucidation of aqueous interactions between fish gelatin and sodium alginate // Carbohydrate polymers. 2016. V. 148. P. 181–188. https://doi.org/10.1016/j.carbpol.2016.04.035
- Phawaphuthanon N., Yu D., Ngamnikom P., Shin I.-S., Chung D. Effect of fish gelatin-sodium alginate interactions on foam formation and stability // Food Hydrocolloids. 2019. V. 88. P. 119–126. https://doi.org/10.1016/j.foodhyd.2018.09.041
- Zhang J., Du H., Ma N., et al. Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide // Food Science and Human Wellness. 2022. V. 12. № 1. P. 183–191. https://doi.org/10.1016/j.fshw.2022.07.006
- Kolotova D.S., Borovinskaya E.V., Bordiyan V.V., et al. Phase behavior of aqueous mixtures of sodium alginate with fish gelatin: Effects of pH and ionic strength // Polymers. 2023. V. 15. № 10. P. 2253. https://doi.org/10.3390/polym15102253
- Tong L., Kang X., Fang Q., et al. Rheological properties and interactions of fish gelatin‐κ‐carrageenan polyelectrolyte hydrogels: The effects of salt // Journal of Texture Studies. 2021. V. 53. № 1. P. 122–132. https://doi.org/10.1111/jtxs.12624
- Voron’ko N.G., Derkach S.R., Vovk M.A., Tolstoy P.M. Formation of κ-carrageenan–gelatin polyelectrolyte complexes studied by 1H NMR, UV spectroscopy and kinematic viscosity measurements // Carbohydrate Polymers. 2016. V. 151. P. 1152–1161. https://doi.org/10.1016/j.carbpol.2016.06.060
- Boral S., Bohidar H.B. Effect of ionic strength on surface-selective patch bindung-induced phase separation and coacervation in similarly charged gelatin–agar molecular systems // The Journal of Physical Chemistry. 2010. V. 114. № 37. P. 12027–12035. https://doi.org/10.1021/jp105431t
- Pathak J., Rawat K., Bohidar H.B. Surface patch binding and mesophase separation in biopolymeric polyelectrolyte–polyampholyte solutions // International Journal of Biological Macromolecules. 2014. V. 63. P. 29–37. http://doi.org/10.1016/j.ijbiomac.2013.10.020
- Roy S., Rhim J.-W. Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications // Colloids and Surfaces A. 2021. V. 627. P. 127220. http://doi.org/10.1016/j.colsurfa.2021.127220
- Du L., Ru Y., Weng H., et al. Agar-gelatin Maillard conjugates used for Pickering emulsion stabilization // Carbohydrate Polymers. 2024. V. 340. № 4. P. 122293. https://doi.org/10.1016/j.carbpol.2024.122293
- Mendoza-Wilson A.M., Balandran-Quintana R.R., Azamar-Barrios J.A., Cabellos J.L. Effects of adding sorghum procyanidins on the structure, molecular interactions, and thermal properties of agar-glycerol-gelatin films // Journal of Computational Biophysics and Chemistry. 2024. V. 23. № 5. P. 605–622. https://doi.org/10.1142/S2737416524500078
- Isik I., Yenipazar H., Saygün A., et al. Aloe vera oil-added agar gelatin edible films for kashar cheese packaging // ACS Omega. 2023. V. 8. № 21. P. 18516–18522. https://doi.org/10.1021/acsomega.3c00147
- Fathiraja P., Gopalrajan S., Kumar K., Obaiah M.C. Augmentation of bioactivity with addition of clove essential oil into fish scale gelatin, agar and chitosan composite film and biodegradable features // Polymer Bulletin. 2024. V. 81. № 6. P. 5329–5357. https://doi.org/10.1007/s00289-023-04961-9
- Boonprab K., Chirapat A., Effendy W.N.A. Edible-algae base composite film containing gelatin for food packaging from macroalgae, Gracilaroid (Gracilaria fisheri) // Journal of The Science of Food and Agriculture. 2024. V. 104. № 11. P. 6987–7001. https://doi.org/10.1002/jsfa.13531
- Kim H.-J., Roy S., Rhim J.-W. Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp // Food Hydrocolloids. 2022. V. 124. P. 107294. https://doi.org/10.1016/j.foodhyd.2021.107294
- How Y. H., Wong L. X., Kong I., Nyam K.L., Pui L.P. Development of multilayered pH-sensitive chitosan–gelatin–agar intelligent film incorporated with roselle anthocyanin extract for monitoring of the freshness of snapper fish // Food and Bioprocess Technology. 2024. V. 17. № 11. P. 4177–4194. https://doi.org/10.1007/s11947-024-03377-1
- Garcia-Orue I., Santos-Vizcaino E., Uranga J., et al. Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing // Journal of Materials Chemistry B. 2023. V. 11. № 29. P. 6896–6910. http://doi.org/10.1039/D2TB02796H
- Razuidi D.A.A., Mahat M., Sofian Z.M., et al. Synthesis and characterization of porous, electro-conductive chitosan–gelatin–agar-based PEDOT: PSS scaffolds for potential use in tissue engineering // Polymers. 2021. V. 13. № 17. P. 2901. https://doi.org/10.3390/polym13172901
- Zhou X., Yu J., Qian S., Chen Y. Study on texture detection of gelatin-agar composite gel based on bionic chewing // Journal of Food Measurement and Characterization. 2023. V. 17. № 2. P. 5093–5102. https://doi.org/10.1007/s11694-023-02016-1
- González-Maldonado J., Ramírez-Valverde G., Rangel-Santos R., et al. Ram semen quality after supplementation with gelatin, agar or alginate prior to cooling storage // Reproduction in Domestic Animals. 2023. V. 58. № 10. P. 1487–1493. https://doi.org/10.1111/rda.14463
- Haug I.J., Draget K.I. Gelatin // In: Handbook of hydrocolloids. Phillips G.O., Williams P.A. Eds. Boca Raton, Boston, New York, Washington DC: CRC Press. 2009. P. 142–163. https://doi.org/10.1533/9781845695873.142
- Derkach S.R., Voron’ko N.G., Kuchina Yu.A., Kolotova D.S. Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies // Polymers. 2020. V. 12. № 12. P. 3051. http://doi.org/10.3390/polym12123051
- Joy J.M., Padmaprakashan A., Pradeep A., et al. A review on fish skin-derived gelatin: elucidating the gelatin peptides – preparation, bioactivity, mechanistic insights, and strategies for stability improvement // Foods. 2024. V. 13. № 17. P. 2793. https://doi.org/10.3390/foods13172793
- Derkach S.R., Voron’ko N.G., Kuchina Yu.A., et al. Rheological properties of fish and mammalian gelatin hydrogels as basis for potential practical formulation // Gels. 2024. V. 10. № 8. P. 486. https://doi.org/10.3390/gels10080486
- Oliveira V. de M., Assis C.R.D., Costa B. de A.M., et al. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products // Journal of Molecular Structure. 2021. V. 1224. P. 129023. http://doi.org/10.1016/j.molstruc.2020.129023
- Da Silva C.G., Rodrigues A.S., Lima A.C., et al. Gelatin extracted from jundiá skin (Rhamdia quelen): An alternative to the discarded by-product // Food Research International. 2022. V. 161. P. 111829. http://doi.org/10.1016/j.foodres.2022.111829
- Shi X.-D., Huang J.-J., Wu J.-L., et al. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: A review // Food Hydrocolloids. 2021. V. 122. № 15. P. 107106. https://doi.org/10.1016/j.foodhyd.2021.107106
- Armisen R., Galatas F. Agar // In: Handbook of hydrocolloids. Phillips G.O., Williams P.A. Eds. Boca Raton, Boston, New York, Washington DC: CRC Press. 2009. P. 82–107. https://doi.org/10.1533/9781845695873.82
- Usov A.I. Polysaccharides of the red algae // Advances in carbohydrate chemistry and biochemistry. 2011. V. 65. P. 115–217. https://doi.org/10.1016/b978-0-12-385520-6.00004-2
- Muthukumar J., Chidambaram R., Sukumaran S. Sulfated polysaccharides and its commercial applications in food industries–a review // Journal of Food Science and Technology. 2020. V. 58. № 7. P. 2453–2466. https://doi.org/10.1007/s13197-020-04837-0
- Nishinari K., Fang Y. Relation between structure and rheological/thermal properties of agar / A mini-review on the effect of alkali treatment and the role of agaropectin // Food Structure. 2017. V. 13. P. 24–34. http://doi.org/10.1016/j.foostr.2016.10.003
- Rochas C., Lahaye M., Yaphe W. Sulphate content of carrageenan and agar determined by infrared spectroscopy // Botanica Marina. 1986. V. XXIX. P. 335–340. https://doi.org/10.1515/botm.1986.29.4.335
- Derkach S.R., Kuchina Yu.A., Baryshnikov A.V., Kolotova D.S., & Voron’ko N.G. Tailoring cod gelatin structure and physical properties with acid and alkaline extraction // Polymers. 2019. V. 11. № 10. P. 1724. http://doi.org/10.3390/polym11101724
- Zuev Yu.F., Derkach S.R., Bogdanova L.R., et al. Underused marine resources: Sudden properties of cod skin gelatin gel // Gels. 2023. V. 9. № 12. P. 990. https://doi.org/10.3390/gels9120990
- Derkach S.R., Kolotova D.S., Voron’ko N.G., Obluchinskaya E.D., Malkin A.Ya. Rheological properties of fish gelatin modified with Sodium alginate // Polymers. 2021. V. 13. № 5. P. 743. http://doi.org/10.3390/polym13050743
- Derkach S.R., Voron’ko N.G., Sokolan N.I., Kolotova D.S., Kuchina Yu.A. Interactions between gelatin and sodium alginate: UV and FTIR studies // Journal of Dispersion Science and Technology. 2020. V. 41. № 5. P. 690–698. http://doi.org/10.1080/01932691.2019.1611437
- Handbook of biochemistry and molecular biology. Lundblad R.L., Macdonald F.M. Eds. Boca Raton. Boston.London. New York: CRC Press. 2010. https://doi.org/10.1201/b21846
- Handbook of chemistry and physics. Lide D.R. Ed. Boca Raton: CRC Press LLC. 2004.
Дополнительные файлы

