ВЛИЯНИЕ МЕХАНИЧЕСКОЙ АКТИВАЦИИ НА СТРУКТУРУ И СОРБЦИОННЫЕ СВОЙСТВА ГИДРОЛИЗНОГО ЛИГНИНА, КАОЛИНА И КОМПОЗИТОВ НА ИХ ОСНОВЕ
- Авторы: Дабижа О.Н.1,2, Бондаревич Е.А.3, Иванькова Е.М.4, Хамова Т.В.1, Шилова О.А.1,5
-
Учреждения:
- Филиал Петербургского института ядерной физики им. Б.П. Константинова НИЦ «Курчатовский институт» – Институт химии силикатов им. И.В. Гребенщикова
- Забайкальский государственный университет
- Читинская государственная медицинская академия
- Филиал Петербургского института ядерной физики им. Б.П. Константинова НИЦ «Курчатовский институт» – Институт высокомолекулярных соединений
- Санкт-Петербургский электротехнический университет «ЛЭТИ»
- Выпуск: Том 87, № 5 (2025)
- Страницы: 489-505
- Раздел: Статьи
- Статья получена: 02.12.2025
- Статья опубликована: 15.09.2025
- URL: https://gynecology.orscience.ru/0023-2912/article/view/697451
- DOI: https://doi.org/10.7868/S3034543X25050026
- ID: 697451
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
О. Н. Дабижа
Филиал Петербургского института ядерной физики им. Б.П. Константинова НИЦ «Курчатовский институт» – Институт химии силикатов им. И.В. Гребенщикова; Забайкальский государственный университет
Email: dabiga75@mail.ru
Санкт-Петербург, Россия; Чита, Россия
Е. А. Бондаревич
Читинская государственная медицинская академия
Email: email@example.com
Чита, Россия
Е. М. Иванькова
Филиал Петербургского института ядерной физики им. Б.П. Константинова НИЦ «Курчатовский институт» – Институт высокомолекулярных соединений
Email: email@example.com
Санкт-Петербург, Россия
Т. В. Хамова
Филиал Петербургского института ядерной физики им. Б.П. Константинова НИЦ «Курчатовский институт» – Институт химии силикатов им. И.В. Гребенщикова
Email: email@example.com
Санкт-Петербург, Россия
О. А. Шилова
Филиал Петербургского института ядерной физики им. Б.П. Константинова НИЦ «Курчатовский институт» – Институт химии силикатов им. И.В. Гребенщикова; Санкт-Петербургский электротехнический университет «ЛЭТИ»
Email: email@example.com
Санкт-Петербург, Россия; Санкт-Петербург, Россия
Список литературы
- Ogbu I.C., Akpomie K.G., Osunkunle A.A., Eze S.I. Sawdust-kaolinite composite as efficient sorbent for heavy metal ions // Bangladesh J. Sci. Ind. Res. 2019. V. 54. № 1. P. 99–110. https://doi.org/10.3329/bjsir.v54i1.40736
- Alkizwini R.S. The use of an organo-kaolinite sorbent in a permeable reactive barrier for remediating groundwater contaminated with methylene blue dye experimental and theoretical investigation // Environ. Process. 2021. V. 8. P. 889–910. https://doi.org/10.1007/s40710-021-00515-1
- Tishin A.N., Krut U.A., Tishina O.M., Beskhmelnitsyna E.A., Yakushev V.I. Physico-chemical properties of montmorillonite clays and their application in clinical practice (review) // Research result: pharmacology and clinical pharmacology. 2017. V. 3. № 2. P. 119–128. https://doi.org/10.18413/2313-8971-2017-3-2-119-128
- Каспржицкий А.С., Лазоренко, Г.И., Кругликов, А.А., Явна В.А., Анизотропия поверхностных свойств каолинита и ее роль при адсорбции молекул воды // Коллоид. журн. 2023. Т. 85. № 2. С. 167–178. https://doi.org/10.31857/S0023291222600596
- Тарасевич Ю.И., Поляков В.Е., Трифонова М.Ю, Микрокалориметрическое исследование взаимодействия воды с поверхностью каолинита, модифицированного полигексаметиленгуанидином // Коллоидный журнал. 2013. Т. 75. № 1. С. 117–120. https://doi.org/10.7868/S0023291213010102
- Golovkova L.P., Markitan O.V. Adsorption of pharmaceuticals by the hydrolysis lignin surface // Chem. Phys. Technol. Surf. 2024. V. 15. № 2. P. 301–310. https://doi.org/10.15407/hftp15.02.301
- Evstigneyev E.I., Zakusilo D.N., Ryabukhin D., Vasilyev A.V. Recent advances in lignins: fundamentals and application // Russ. Chem. Rev. 2023. V. 92. № 8. P. RCR5082. https://doi.org/10.59761/RCR5082
- Kanmaz N., Buğdaycı M., Demirçivi P. Solvent-free mechanochemical synthesis of TiO2-ethyl cellulose biocomposite for adsorption of tetracycline and organic dyes // J. Mol. Liq. 2023. V. 378. P. 121643. https://doi.org/10.1016/j.molliq.2023.121643
- Juhász A.Z. Aspects of mechanochemical activation in terms of comminution theory // Colloids Surf. A: Physicochem. Eng. Asp. 1998. V. 141. № 3. P. 449–462. https://doi.org/10.1016/S0927-7757(98)00245-3
- Filatova N.V., Kosenko N.F., Badanov M.A. The effect of the mode of heat treatment and mechanoactivation of kaolinite on mullite formation // Tech. Phys. Lett. 2023. V. 25. № 1. P. 81–85. https://doi.org/10.1134/S1063785023700025
- Mañosa J., Calvo-de la Rosa J., Silvello A., Maldonado-Alameda A., Chimenos J.M. Kaolinite structural modifications induced by mechanical activation // Appl. Clay Sci. 2023. V. 238. P. 106918. https://doi.org/10.1016/j.clay.2023.106918
- AlShamaileh E., Alrbaihat M., Moosa I., Abu-Afifeh Q., Al-Fayyad H., Hamadneh I., Al-Rawajfeh A. Mechanochemical preparation of a novel slow-release fertilizer based on K2SO4-kaolinite // Agronomy. 2022. V. 12. № 12. P. 3016. https://doi.org/10.3390/agronomy12123016
- Mako E., Õzе C., The effects of silica fume and diatomaceous earth on the mechanochemical activation and pozzolanic activity of kaolin // Appl. Clay Sci. 2022. V. 228. P. 106636. https://doi.org/10.1016/j.clay.2022.106636
- Machida S., Katsumata K., Yasumori A. Effect of particle size of calcite on the stacking order of kaolinite during mechanical grinding // Int. J. Ceramic. Eng. Sci. 2023. V. 5. № 1. P. e10165. https://doi.org/10.1002/ces2.10165
- Carmody O., Kristóf J., Frost R.L., Makó É., Kloprogge J.T., Kokot S. A spectroscopic study of mechanochemically activated kaolinite with the aid of chemometrics // J. Colloid. Interface Sci. 2005. V. 287. № 1. P. 43–56. https://doi.org/10.1016/j.jcis.2005.01.060
- Neji A.B., Jridi M., kchaou Hela, Nasri M., Sahnoun R.D. Preparation, characterization, mechanical and barrier properties investigation of chitosan-kaolinite nanocomposite // Polym. Test. 2020. V. 84. P. 106380. https://doi.org/10.1016/j.polymertesting.2020.106380
- Zhao X., Zhang Y., Hu H., Huang Z., Yang M., Chen D., Huang K., Huang A., Qin X., Feng Z. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin // Int. J. Biol. Macromol. 2016. V. 91. P. 1081–1089. https://doi.org/10.1016/j.ijbiomac.2016.06.074
- Chistyakov A.V., Tsodikov M.V. Methods for preparing carbon sorbents from lignin (Review) // Russ. J. Appl. Chem. 2018. V. 91. P. 1090–1105. https://doi.org/10.1134/S1070427218070054
- Latypova D.R., Badamshin A.G., Kuleshov S.P., Timashev E.O., Kulnitskiy B.A., Tomilov Yu.V., Nifantiev N.E., Dokichev V.A. New high-efficiency carbon-silica sorbent // Russ. J. Appl. Chem. 2015. V. 88. № 9. P. 1428−1433. https://doi.org/10.1134/S1070427215090074
- Kozhevnikov A.Yu., Semushina M.P., Podrukhina E.A., Kosyakov D.S. Modification of hydrolysis lignin by hydrogen peroxide to obtain an effective adsorbent of highly toxic rocket fuel // Eurasian Chem-Technol. J. 2017. V. 19. № 2. P. 155–161. https://doi.org/10.18321/ectj646
- Sudakova I.G., Levdansky A.V., Kuznetsov B.N. Methods of chemical and thermochemical processing of hydrolytic lignin // J. Sib. Fed. Univ. Chem. 2021. V. 14. № 2. P. 263–275. https://doi.org/10.17516/1998-2836-0236
- Samonina V.V., Khrylova E.D., Spiridonova E.A., Podvyaznikov M.L. Porous structure and krypton sorption capacity of carbon sorbents prepared from a composite of hydrolytic lignin and phenol-lignin-formaldehyde // Russ. J. Phys. Chem. 2022. V. 96. P. 391–396. https://doi.org/10.1134/S0036024422020236
- Bogdanovich N., Arkhilin M., Menshina A., Kuznetsova L., Kanarskii A., Voropaeva N., Figovsky O. Magneto susceptible adsorbents obtained by thermochemical activation of hydrolytic lignin with iron (III) hydroxide // Chem. Chem. Technol. 2017. V. 11. № 2. P. 209–213. https://doi.org/10.23939/chcht11.02.209
- Sverdlova N.I., Vinogradova L.E., Shtyagina L.M., Sazanov Yu.N. Receiving the composite fibrous sorbents based on hydrolytic lignin and polyacrylonitrile // Fiber. Chem. 2018. V. 50. № 2. P. 206–208. https://doi.org/10.1007/s10692-018-9961-8
- Nikolenko Yu., Tsvetnikov A., Ustinov A., Silant’ev V., Kuryavyi V., Ziatdinov A. Hydrolytic lignin: It's activated and fluorinated forms // Key Eng. Mater. 2019. V. 806. P. 100–105. https://doi.org/10.4028/www.scientific.net/KEM.806.100
- T syganova S.I., Fetisova Yu.O., Velikanov D.A., Taran O.P. Structural, magnetic and electrochemical characteristics of Ni/C composites fabricated from modified hydrolytic lignin // Mater. Lett. 2023. V. 352. P. 135120. https://doi.org/10.1016/j.matlet.2023.135120
- Mucha M., Maršálek R., Bukáčková M., Zelenková G. Interaction among clays and bovine serum albumin // RSC Adv. 2020. V. 10. № 72. P. 43927–43939. https://doi.org/10.1039/d0ra01430c
- Dabizha O.N., Khamova T.V., Shilova O.A. Mechanochemical modification of zeolite rocks with polyvinyl alcohol for increasing their oil sorption capacity // Inorg. Mater. 2022. V. 58. № 12. P. 1335–1347. https://doi.org/10.1134/S0020168522120068
- Bondarevich E.A., Dabizha O.N. Adsorption activity of polyphepan-kaolin mechanocomposites towards inorganic ions // Chem. Plant Raw Mater. 2024. V. 4. P. 416–426. https://doi.org/10.14258/jcprm.20240414043 (in Russian)
- Audu I.G., Ziegler-Devin I., Winter H., Bremer M., Hoffmann A., Fischer S., Laborie M-P., Brosse N. Impact of ionic liquid 1-ethyl-3-methylimidazolium acetate mediated extraction on lignin features // Green Sustainable Chem. 2017. V. 7. № 2. P. 114–140. https://doi.org/10.4236/gsc.2017.72010
- Vaculíková L., Plevová E., Vallová S., Koutník I. Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis // Acta Geodyn. Geomater. 2011. V. 8. № 1. P. 59–67.
- Hinckley D.N. Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina // Clays Clay Miner. 1962. V. 11. P. 229–235. https://doi.org/10.1346/CCMN.1962.0110122
- Кhoirunnisa W., Nur M.I., Widyarti S., Permana S., Sumitro S.B. Physiologic glycated-bovine serum albumin determination using spectrum-UV // J. Phys. Conf. Series. 2019. 1241. P. 012003. https://doi.org/10.1088/1742-6596/1241/1/012003
- N’Guessan N.E., Joussein E., Courtin-Nomade A., Paineau E., Soubrand M., Grauby O., Robin V., Cristina C.D., Vantelon D., Launois P., Fondan`eche P., Rossignol S. Texier-Mandoki N., Bourbon X. Role of cations on the dissolution mechanism of kaolinite in high alkaline media // Appl. Clay Sci. 2021. 205. P. 106037. https://doi.org/10.1016/j.clay.2021.106037
- Liang X., Li Q., Fang Y. Preparation and characterization of modified kaolin by a mechanochemical method// Materials. 2023. V. 16. № 8. P. 3099. https://doi.org/10.3390/ma16083099
- Kwon S., Hwang H., Lee Y. Effect of pressure treatment on the specific surface area in kaolin group minerals // Crystals. 2019. V. 9. № 10. P. 528. https://doi.org/10.3390/cryst9100528
- Long J., Xu Y., Wang T., Shu R., Zhang Q., Zhang X., Fu J., Ma L. Hydrothermal depolymerization of lignin: understanding the structural evolution // BioResources. 2014. V. 9. № 4. P. 7162–7175. https://doi.org/10.15376/biores.9.4.7162-7175
- Sachan A., Penumadu D. Identification of microfabric of kaolinite clay mineral using X-ray diffraction technique // Geotech. Geol. Eng. 2007. V. 25. P. 603–616. https://doi.org/10.1007/s10706-007-9133-8
- Saber M., Hamdaoui L.E., Moussaouiti M.E., Tabyaoui M. Extraction and characterization of lignin from moroccan thuya. Its application as adsorbent of methylene blue from aqueous solution // Cellulose Chem. Technol. 2022. V. 56. № 1–2. P. 69–81. https://doi.org/10.35812/CelluloseChemTechnol.2022.56.06
- Mihajlović S.R., Vlahović M.M., Vušović N.M,. Đorđević N.G., Jovanović M.N. Effect оf delamination оn physico-chemical properties оf kaolin // Sci. Sinter. 2021. V. 53. № 2. P. 253–266. https://doi.org/10.2298/SOS2102253M
- Leonel E.C., Nassar E.J., Ciuffi K.J., dos Reis M.J., Calef P.S. Effect of high-energy ball milling in the structural and textural properties of kaolinite // Cerâmica. 2014. V. 60. № 354. P. 267–272. https://doi.org/10.1590/S0366-69132014000200016
- Hergert H.L. Infrared spectra of lignin and related compounds. II. Conifer lignin and model compounds1, 2 // J. Org. Chem. 1960. V. 25. № 3. P. 405–413. https://doi.org/10.1021/jo01073a026
- Po H., Savitskaya T., Reznikov I., Hrynshpan D., Tsygankova N., Telysheva G., Arshanitsa A. Hydrolysis lignin as a sorbent and basis for solid composite biofuel // Adv. Biosci. Biotechnol. 2016. V. 7. № 11. P. 501–530. http://dx.doi.org/10.4236/abb.2016.711046
- Adler E. Lignin chemistry – past, present and future // Wood Sci. Technol. 1977. V. 11. № 3. P. 169–218. https://doi.org/10.1007/bf00365615
- Sui W., Pang T., Wang G., Liu C., Parvez A.M., Si C., Li C. Stepwise ethanol-water fractionation of enzymatic hydrolysis lignin to improve its performance as a cationic dye adsorbent // Molecules. 2020. V. 25. № 11. P. 2603. https://doi.org/10.3390/molecules25112603
- Yan C., Cheng T., Shang J. Effect of bovine serum albumin on stability and transport of kaolinite colloid // Water Research. 2019. V. 155. P. 204–213. https://doi.org/10.1016/j.watres.2019.02.022
- Zahedifar M., Castro F., Ørskov E. Effect of hydrolytic lignin on formation of protein–lignin complexes and protein degradation by rumen microbes // Anim. Feed. Sci. Technol. 2002. V. 95. № 1–2. P. 83–92. https://doi.org/10.1016/s0377-8401(01)00305-4
Дополнительные файлы

