The theory of synchrotron radiation limited beams diffraction in single crystal in the Laue case

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The features of the Bragg diffraction of coherent synchrotron radiation on the atomic lattice of a single crystal in the Laue geometry are studied theoretically, provided that the radiation beam is limited by a relatively large slit placed in front of the crystal. The method of numerical simulation is used and dependences of the intensity distribution are obtained for various thicknesses of the crystal. It is shown that the slit edges introduce inhomogeneous intensity distortions inside the Bormann triangles with an angle of 2θB, where θB is the Bragg angle. In the area where the triangles intersect, the intensity distribution is similar to that for diffraction by a slit in air at a certain (large) distance. An equation for the correspondence between the distance and the thickness of the crystal is obtained, which describes well the results of numerical calculations.

全文:

受限制的访问

作者简介

V. Kohn

National Research Centre “Kurchatov Institute”

Email: irina@issp.ac.ru
俄罗斯联邦, 123182 Moscow

I. Smirnova

Institute of Solid State Physics RAS

编辑信件的主要联系方式.
Email: irina@issp.ac.ru
俄罗斯联邦, 142432 Chernogolovka

参考

  1. Born M., Wolf E. Principles of Optics. 7th ed. Cambridge: University Press, 2002. 952 p.
  2. Kohn V., Snigireva I., Snigirev A. // Phys. Rev. Lett. 2000. V. 85. P. 2745.
  3. Kohn V., Snigireva I., Snigirev A. // Opt. Commun. 2001. V. 198. P. 293.
  4. Snigireva I., Kohn V., Snigirev A. // Nucl. Instrum. Methods. A. 2001. V. 467–468. P. 925.
  5. Leitenberger W., Kuznetsov S.M., Snigirev A. // Opt. Commun. 2001. V. 191. P. 91.
  6. Authier A. Dynamical Theory of X-ray Diffraction. 3rd ed. Oxford University Press, 2005. 696 p.
  7. Pinsker Z.G. Dynamical Scattering of X-Rays in Crystals. Springer-Verlag, 1978. 390 p.
  8. Balyan M.K. //Acta Cryst. A. 2010. V. 66. P. 660. https://doi.org/10.1107/S0108767310035944
  9. Кон В.Г., Смирнова И.A. // Кристаллография. 2022. Т. 67. С. 185. https://doi.org/10.31857/S0023476122020084
  10. Kohn V.G., Smirnova I.A. // Crystallography Reports. 2022. V. 67. P. 1068. https://doi.org/10.1134/S1063774522070446
  11. Snigirev A., Snigireva I., Kohn V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801
  12. Authier A., Malgrange C., Tournarie M. // Acta Cryst. A. 1968. V. 24. P. 126. https://doi.org/10.1107/S0567739468000161
  13. Слободецкий И.Ш., Чуховский Ф.Н. // Кристаллография. 1970. Т. 15. С. 1101.
  14. Инденбом В.Л., Чуховский Ф.Н. // Успехи физ. наук. 1972. Т. 107. С. 229.
  15. Кон В.Г. // Кристаллография. 2023. Т. 68. С. 196. https://doi.org/10.31857/S002347612302008X
  16. Кон В.Г. http://xray-optics.ucoz.ru/XR/xrwp.htm
  17. Toellner T.S. // Hyperfine Interact. 2000. V. 125. P. 3.
  18. Cooley J.W., Tukey J.W. // Math. Comput. 1965. V. 19. P. 297.
  19. Слободецкий И.Ш., Чуховский Ф.Н., Инденбом В.Л. // Письма в ЖЭТФ. 1968. Т. 8. С. 90.
  20. Authier A., Simon D. // Acta Cryst. A. 1968. V. 24. P. 517.
  21. Kohn V.G., Argunova T.S., Je J.H. // J. Phys. D. Appl. Phys. 2010. V. 43. P. 442002(3). https://doi.org/10.1088/0022-3727/43/44/442002
  22. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature (London). 1996. V. 384. P. 49.
  23. Афанасьев А.М., Кон В.Г. // ФТТ. 1977. Т. 19. С. 1775.
  24. Кон В.Г. // http://kohnvict.ucoz.ru/jsp/3-difpar.htm
  25. Kato N. // Acta Cryst. 1961. V. 14. P. 627. https://doi.org/10.1107/S0365110X61001947

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1.

下载 (51KB)
3. Fig. 2.

下载 (97KB)
4. Fig. 3.

下载 (170KB)
5. Fig. 4.

下载 (327KB)
6. Fig. 5.

下载 (481KB)
7. Fig. 6.

下载 (105KB)

版权所有 © Russian Academy of Sciences, 2024