Зависимость свойств фторированного активирующего носителя и нанесенного металлоценового катализатора сополимеризации этилена от предварительной термообработки мезопористого силикагеля

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Использование активирующих носителей в приготовлении нанесенных металлоценовых катализаторов полимеризации олефинов, получаемых реакцией мезопористого силикагеля с алюминийорганическими соединениями, термоокислительной обработкой и фторированием, позволяет избежать использования дорогостоящего и малодоступного метилалюмоксана (МАО). В работе представлены результаты исследования влияния температуры прокаливания мезопористого силикагеля ES70 на основные характеристики фторированных носителей на его основе и способность полученных носителей к активации (η5-BuC5H4)2ZrCl2 в присутствии Et3Al. Эксперименты по суспензионной сополимеризации этилена и гексена‑1 выявили более высокую активность полученных катализаторов (2,2–2,5 кгПЭкат) по сравнению с наносимым металлоценовым катализатором, синтезированным с использованием МАО (1,73 кгПЭкат). Показано, что повышение температуры предварительного прокаливания носителя снижает активность катализатора, практически не влияя на характеристики сополимера, что может быть использовано в полиолефиновой индустрии для управления важным параметром производительности нанесенного металлоценового катализатора полимеризации этилена.

作者简介

O. Kostomarova

LLC 'SIBUR-Innovations', Tomsk, 634022 Russia

Email: phpasha1@yandex.ru
Tomsk, 634022 Russia

I. Nifant'ev

Institute of Petrochemical Synthesis named after A.V. Topchieva RAS, Moscow, 119991 Russia; Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia

Email: phpasha1@yandex.ru
Moscow, 119991 Russia; Moscow, 119991 Russia

N. Kolosov

LLC 'SIBUR-Innovations', Tomsk, 634022 Russia

Email: phpasha1@yandex.ru
Tomsk, 634022 Russia

S. Zubkevich

LLC 'SIBUR-Innovations', Tomsk, 634022 Russia

Email: phpasha1@yandex.ru
Tomsk, 634022 Russia

P. Komarov

Institute of Petrochemical Synthesis named after A.V. Topchieva RAS, Moscow, 119991 Russia

Email: phpasha1@yandex.ru
Moscow, 119991 Russia

P. Ivchenko

Institute of Petrochemical Synthesis named after A.V. Topchieva RAS, Moscow, 119991 Russia

编辑信件的主要联系方式.
Email: phpasha1@yandex.ru
Moscow, 119991 Russia

参考

  1. Sauter D.W., Taoufik M., Boisson C. Polyolefins, a success story // Polymers. 2017. V. 9. № 6. ID 185. https://doi.org/10.3390/polym9060185
  2. Jubinville D., Esmizadeh E., Saikrishnan S., Tzoganakis C., Mekonnen T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications // Sustain. Mater. Technol. 2020. V. 25. ID e00188. https://doi.org/10.1016/j.susmat.2020.e00188
  3. Qiao J.L., Guo M.F., Wang L.S., Liu D.B., Zhang X.F., Yu L.Q., Song W.B., Liu Y.Q. Recent advances in polyolefin technology // Polym. Chem. 2011. V. 2. № 8. P. 1611–1623. https://doi.org/10.1039/c0py00352b
  4. Weckhuysen B.M., Schoonheydt R.A. Olefin polymerization over supported chromium oxide catalysts // Catal. Today. 1999. V. 51. № 2. P. 215–221. https://doi.org/10.1016/s0920-5861(99)00046-2
  5. Nifant’ev, I.E., Salakhov I.I., Ivchenko P.V. Transition metal–(μ-Cl)–aluminum bonding in α-olefin and diene chemistry // Molecules. 2022. V. 27. № 21. ID 7164. https://doi.org/10.3390/molecules27217164
  6. Nifant’ev, I., Komarov P., Sadrtdinova G., Safronov V., Kolosov N., Ivchenko P. Mechanistic insights of ethylene polymerization on Phillips chromium catalysts // Polymers. 2024. V. 16. № 5. ID 681. https://doi.org/10.3390/polym16050681
  7. Shamiri A., Chakrabarti M.H., Jahan S., Hussain M.A., Kaminsky W., Aravind P.V., Yehye W.A. The influence of ziegler-natta and metallocene catalysts on polyolefin structure, properties, and processing ability // Materials. 2014. V. 7. № 7. P. 5069–5108. https://doi.org/10.3390/ma7075069
  8. Chum P.S., Swogger K.W. Olefin polymer technologies – history and recent progress at the Dow Chemical Company // Prog. Polym. Sci. 2008. V. 33. № 8. P. 797–819. https://doi.org/10.1016/j.progpolymsci.2008.05.003
  9. Baier M.C., Zuideveld M.A., Mecking S. Post-metallocenes in the industrial production of polyolefins // Angew. Chem. Int. Ed. 2014. V. 53. № 37. P. 9722–9744. https://doi.org/10.1002/anie.201400799
  10. Bochmann M. The chemistry of catalyst activation: the case of group 4 polymerization catalysts // Organometallics. 2010. V. 29. № 21. P. 4711–4740. https://doi.org/10.1021/om1004447
  11. Zaccaria F., Zuccaccia C., Cipullo R., Budzelaar P.H.M., Vittoria A., Macchioni A., Busico V., Ehm C. Methylaluminoxane’s molecular cousin: a well-defined and «complete» Al-activator for molecular olefin polymerization catalysts // ACS Catal. 2021. V. 11. № 8. P. 4464–4475. https://doi.org/10.1021/acscatal.0c05696
  12. Severn J.R., Chadwick J.C., Duchateau R., Friederichs N. «Bound but not gagged» immobilizing single-site α-olefin polymerization catalysts // Chem. Rev. 2005. V. 105. № 11. P. 4073–4147. https://doi.org/10.1021/cr040670d
  13. Luo L., Younker J.M., Zabula A.V. Structure of methylaluminoxane (MAO): extractable [Al(CH3)2]+ for precatalyst activation // Science. 2024. V. 384. № 6703. P. 1424–1428. https://doi.org/10.1126/science.adm7305
  14. Collins S., Linnolahti M. A cooperative model for metallocene catalyst activation by methylaluminoxane // Dalton Trans. 2025. V. 54. № 6. P. 2331–2339. https://doi.org/10.1039/d4dt03124e
  15. Saudemint T., Spitz R., Broyer J.-P., Malinge J., Verdel N. Activator solid support for metallocene catalysts in the polymerization of olefins, a process for preparing such a support, and the corresponding catalytic system and polymerization process. Patent US № 6239059. 2001.
  16. Prades F., Broyer J.-P., Belaid I., Boyron O., Miserque O., Spitz R., Boisson C. Borate and MAO free activating supports for metallocene complexes // ACS Catal. 2013. V. 3. № 10. P. 2288–2293. https://doi.org/10.1021/cs400655y
  17. Tisse V.F., Boisson C., McKenna T.F.L. Activation and deactivation of the polymerization of ethylene over rac-EtInd2ZrCl2 and (nBuCp)2ZrCl2 on an activating silica support // Macromol. Chem. Phys. 2014. V. 215. № 14. P. 1358–1369. https://doi.org/10.1002/macp.201400023
  18. Prades F., Boisson C., Spitz R., Razavi A. Activating supports for metallocene catalysis. Patent US № 7759271. 2010.
  19. Prades F. Metallocene catalyst components supported on activating supports. Patent US № 8298977-B2. 2012.
  20. Pannier G., Boisson C., Spitz R. Activating supports with controlled distribution of OH groups. Patent US № 8524627. 2006.
  21. Tisse V.F., Prades F., Briquel R., Boisson C., McKenna T.F.L. Role of silica properties in the polymerisation of ethylene using supported metallocene catalysts // Macromol. Chem. Phys. 2010. V. 211. № 1. P. 91–102. https://doi.org/10.1002/macp.200900311
  22. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309–319. https://doi.org/10.1021/ja01269a023
  23. Bae Y.-S., Yazaydın A.Ö., Snurr R.Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores // Langmuir. 2010. V. 26. № 8. P. 5475–5483. https://doi.org/10.1021/la100449z
  24. Zhuravlev L.T. The surface chemistry of amorphous silica. Zhuravlev model // Colloids Surf. A: Physicochem. Eng. Asp. 2000. V. 173. № 1–3. P. 1–38. https://doi.org/10.1016/s0927-7757(00)00556-2
  25. Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms // J. Am. Chem. Soc. 1951. V. 73. № 1. P. 373–380. https://doi.org/10.1021/ja01145a126
  26. Putz A.-M., Putz M.V. Spectral inverse quantum (Spectral-IQ) method for modeling mesoporous systems: Application on silica films by FTIR // Int. J. Mol. Sci. 2012. V. 13. № 12. P. 15925–15941. https://doi.org/10.3390/ijms131215925
  27. Severn J.R. Recent developments in supported polyolefin catalysts: a review. In: Multimodal Polymers with Supported Catalysts. Albunia A.R., Prades F., Jeremic D. (eds.) – Springer, Cham, 2019. P. 1–534. https://doi.org/10.1007/978-3-030-03476-4_1
  28. McDaniel M.P., Jensen M.D., Jayaratne K., Collins K.S., Benham E.A., McDaniel N.D., Das P.K., Martin J.L., Yang Q., Thorn M.G., Masino A.P. Chapter 7. Metallocene activation by solid acids. In: Tailor-made polymers: via immobilization of alpha-olefin polymerization catalysts. Severn J.R., Chadwick J.C. (eds.), 2008. P. 171–210. https://doi.org/10.1002/9783527621668.ch7
  29. Fripiat J.J., Uytterhoeven J. Hydroxyl content in silica gel «Aerosil» // J. Phys. Chem. 1962. V. 66. № 5. P. 800–805. https://doi.org/10.1021/j100811a007
  30. Ide M., El-Roz M., De Canck E., Vicente A., Planckaert T., Bogaerts T., Van Driessche I., Lynen F., Van Speybroeck V., Thybault-Starzyk F., Van Der Voort P. Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols // Phys. Chem. Chem. Phys. 2013. V. 15. № 2. P. 642–650. https://doi.org/10.1039/c2cp42811c
  31. Atiqullah M., Akhtar M.N., Moman A.A., Abu-Raqabah A.H., Palackal S.J., Al-Muallem H.A., Hamed O.M. Influence of silica calcination temperature on the performance of supported catalyst SiO2–nBuSnCl3/MAO/(nBuCp)2ZrCl2 polymerizing ethylene without separately feeding the MAO cocatalyst // Appl. Catal. A: Gen. 2007. V. 320. P. 134–143. https://doi.org/10.1016/j.apcata.2007.01.023
  32. Mueller R., Kammler H.K., Wegner K., Pratsinis S.E. OH surface density of SiO2 and TiO2 by thermogravimetric analysis // Langmuir. 2003. V. 19. № 1. P. 160–165. https://doi.org/10.1021/la025785w
  33. Ek S., Root A., Peussa M., Niinistö L. Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results // Thermochim. Acta. 2001. V. 379. № 1–2. P. 201–212. https://doi.org/10.1016/s0040-6031(01)00618-9
  34. Pullukat T.J., Hoff R.E. Silica-based Ziegler–Natta catalysts: a patent review // Catal. Rev. 1999. V. 41. № 3–4. P. 389–428. https://doi.org/10.1081/cr-100101172
  35. Antakli S.C., Serpinet J. Determination of the concentration of silanol groups by a chemical reaction with methyllithium and GC measurements of evolved methane // Chromatographia. 1987. V. 23. P. 767–769. https://doi.org/10.1007/bf02312671
  36. Scokart P.O., Selim S.A., Damon J.P., Rouxhet P.G. The chemistry and surface chemistry of fluorinated alumina // J. Colloid Interface Sci. 1979. V. 70. № 2. P. 209–222. https://doi.org/10.1016/0021-9797(79)90026-2
  37. Soga K., Kaminaka M. Polymerization of propene with zirconocene-containing supported catalysts activated by common trialkylaluminiums // Makromol. Chem. 1993. V. 194. № 6. P. 1745–1755. https://doi.org/10.1002/macp.1993.021940621
  38. Krahl T., Kemnitz E. Aluminium fluoride – the strongest solid Lewis acid: structure and reactivity // Catal. Sci. Technol. 2017. V. 7. № 4. P. 773–796. https://doi.org/10.1039/c6cy02369j
  39. DuMont J.W., Marquardt A.E., Cano A.M., George S.M. Thermal atomic layer etching of SiO2 by a «conversion-etch» mechanism using sequential reactions of trimethylaluminum and hydrogen fluoride // ACS Appl. Mater. Interfaces. 2017. V. 9. № 11. P. 10296–10307. https://doi.org/10.1021/acsami.7b01259
  40. Stosiek C., Scholz G., Schroeder S.L.M., Kemnitz E. Structure and properties of noncrystalline aluminum oxide-hydroxide fluorides // Chem. Mater. 2010. V. 22. № 7. P. 2347–2356. https://doi.org/10.1021/cm903573a
  41. Mysen B.O., Virgo D. Structure and properties of fluorine-bearing aluminosilicate melts: the system Na2O-Al2O3-SiO2-F at 1 atm // Contrib. Mineral. Petrol. 1985. V. 91. P. 205–220. https://doi.org/10.1007/bf00413348
  42. Yang Q., McDaniel M.P. Comparison of support effects on Phillips and metallocene catalysts // Catalysts. 2021. V. 11. № 7. ID 842. https://doi.org/10.3390/catal11070842
  43. Танабе К. Твердые кислоты и основания / Пер. с англ., под ред. К.В. Топчиевой. М.: Мир, 1973. 184 с.
  44. Yurdakoç M., Akçay M., Tonbul Y., Yurdakoç K. Acidity of silica-alumina catalysts by amine titration using Hammett indicators and FT-IR study of pyridine adsorption // Turk. J. Chem. 1999. V. 23. № 3. P. 319–328.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025