Influence of Sodium Aluminum Iron Phosphate Glass Composition on Its Resistance to Leaching

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The influence of the content of structure-forming components of sodium aluminum iron phosphate glass on its phase composition, structure, and resistance to leaching at elevated temperatures as necessary characteristics of vitrified iron-containing high-level waste during its deep disposal was studied. It was found that the samples studied (mol %), 40.0Na2O–12.5Al2O3–12.5Fe2O3–35.0P2O5, 35.0Na2O–12.5Al2O3–12.5Fe2O3–40.0P2O5, and 35.0Na2O–10.0Al2O3–10.0Fe2O3–45.0P2O5, are represented by a single amorphous glass phase and have high hydrothermal stability. The leaching rate of sodium and phosphorus from the above samples under semidynamic (on the 28th day) and dynamic (on the 10th day) conditions at 90 and 95°C, respectively, was about 10−5 g/(cm2 day), that of aluminum, within the range (2–10) × 10−6 and (0.6–2) × 10−5 g/(cm2 day), respectively, and that of iron, within the range (7–12) × 10−7 and (0.4–3) × 10−6 g/(cm2 day), respectively.

作者简介

S. Fimina

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: kulikova.sveta92@mail.ru
Moscow, Russia

K. Belova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Moscow, Russia

S. Vinokurov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Moscow, Russia

参考

  1. Мясоедов Б.Ф., Калмыков С.Н., Шадрин А.Ю. // Вестн. РАН. 2021. T. 91. № 5. С.459.
  2. Нормы МАГАТЭ по безопасности для защиты людей и охраны окружающей среды. Классификация радиоактивных отходов Руководство по безопасности № GSG-1. Вена: МАГАТЭ, 2014. URL: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1419r_web.pdf (дата обращения 06.05.2025)
  3. Фролова А.В., Данилов С.С., Куликова С.А., Винокуров С.Е., Мясоедов Б.Ф. // Вопр. радиац. безопасности. 2020. № 3. С. 33.
  4. Болдырев К.А., Соболев Д.А., Кочкин Б.Т., Баринов А.С. // Радиоактивные отходы. 2022. № 3 (20). С. 72.
  5. Данилов С.С., Винокуров С.Е., Стефановский С.В., Мясоедов Б.Ф. // Радиохимия. 2017. Т. 59. № 3. С. 226.
  6. Ремизов М.Б., Мелентьев А.Б., Шайдуллин С.М., Вербицкий К.В., Козлов П.В., Бендасов Д.И. // Радиоактивные отходы. 2024. № 1 (26). С. 35.
  7. Глазкова Я.С., Калмыков С.Н., Пресняков И.А., Стефановская О.И., Стефановский С.В. // Физика и химия стекла. 2015. Т. 41. № 4. С. 487.
  8. Стефановский С.В., Стефановская О.И., Винокуров С.Е., Данилов С.С., Мясоедов Б.Ф. // Радиохимия. 2015. Т. 57. № 4. С. 295.
  9. Stefanovsky S.V., Stefanovsky O.I., Kadyko M.I., Presnyakov I.A., Myasoedov B.F. // J. Non-Cryst. Solids. 2015. Vol. 425. P. 138.
  10. Стефановский С.В., Стефановская О.И., Кадыко М.И., Мясоедов Б.Ф., Никонов Б.С., Винокуров С.Е., Данилов С.С. // Вопр. радиац. безопасности. 2015. № 3. С. 56.
  11. Дробышевский Н.И., Моисеенко Е.В., Бутов Р.А., Токарев Ю.Н. // Радиоактивные отходы. 2017. № 1. С. 64.
  12. ГОСТ Р 52126–2003. Отходы радиоактивные. Определение химической устойчивости отвержденных высокоактивных отходов методом длительного выщелачивания. М.: Госстандарт России, 2003.
  13. US DOE. Nuclear Waste Materials Handbook (Test Methods). Rep. DOE/TIC-11400. Washington, DC: Technical Information Center, 1981.
  14. TRS 257: Chemical Durability and Related Properties of Solidified High-Level Waste Forms. Vienna: IAEA, 1985.
  15. Li X., Tao X., Xia Y., Luo M., Zeng X., Shi J., Xiao Z., Kong L.B. // J. Non-Cryst. Solids. 2022. Vol. 581. Article 121303.
  16. Stefanovsky S.V., Stefanovsky O.I., Remizov M.B., Belanova E.A., Kozlov P.V., Glazkova Y.S., Sobolev A.V., Presniakov I.A., Kalmykov S.N., Myasoedov B.F. // J. Nucl. Mater. 2015. Vol. 466. P. 142.
  17. Казьмина О.В., Беломестнова Э.Н., Дитц А.А. Химическая технология стекла и ситаллов: учеб. пособие. Томск: Изд-во Томского политехнического ун-та, 2011. 170 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025