Reaction of Technetium(I) Tricarbonyl Hexafluoroacetylacetonate Complexes with CCl4: Formation and Crystal Structure of [99ТсСl(СО)3(РРh3)2] Stereoisomers and of fac-[99ТсСl(СО)35Н5N)2]

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In the course of prolonged interaction in the system consisting of [99Тс(hfa)(СО)4] (hfa is the anion of 1,1,1,5,5,5-hexafluoroacetylacetone), triphenylphosphine (РРh3) or pyridine (py), and CCl4, the hfa anion is gradually displaced by the chloride ion with the formation of the complexes fac- and mer-[99ТсСl(СО)3(РРh3)2] and fac-[99ТсСl(СО)3(py)2]. The crystal and molecular structures of the complexes were determined. The complex fac [99ТсСl(СО)3(РРh3)2] is the first structurally confirmed example of technetium(I) tricarbonyl bis(triphenylphosphine) complexes of facial structure.

Авторлар туралы

G. Sidorenko

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI

Email: gevasid@mail.ru
St. Petersburg, Russia; Ozyorsk, Russia

V. Gurzhiy

St. Petersburg State University

St. Petersburg, Russia

A. Miroslavov

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI; St. Petersburg State University

St. Petersburg, Russia; Ozyorsk, Russia; St. Petersburg, Russia

A. Kochergina

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI; St. Petersburg State University

St. Petersburg, Russia; Ozyorsk, Russia; St. Petersburg, Russia

M. Tyupina

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI

St. Petersburg, Russia; Ozyorsk, Russia

Әдебиет тізімі

  1. Sagnou M., Benaki D., Triantis C., Tsotakos T., Psycharis V., Raptopoulou C.P., Pirmettis I., Papadopoulos M., Pelecanou M. // Inorg. Chem. 2011. Vol. 50. N 4. P. 1295–1303. https://doi.org/10.1021/ic102228u
  2. Triantis C., Tsotakos T., Tsoukalas C., Sagnou M., Raptopoulou C., Terzis A., Psycharis V., Pelecanou M., Pirmettis I., Papadopoulos M. // Inorg. Chem. 2013. Vol. 52. N 22. P. 12995–13003. https://doi.org/10.1021/ic401503b
  3. Benny P.D., Fugate G.A., Ganguly T., Twamley B., Bučar D.-K., MacGillivray L.R. // Inorg. Chim. Acta. 2011. Vol. 365. N 1. P. 356–362. https://doi.org/10.1016/j.ica.2010.09.050
  4. Sagnou M., Tsoukalas C., Triantis C., Raptopoulou C.P., Terzis A., Pirmettis I., Pelecanou M., Papadopoulos M. // Inorg. Chim. Acta. 2010. Vol. 363. N 8. P. 1649–1653. https://doi.org/10.1016/j.ica.2010.01.004
  5. Sidorenko G.V., Miroslavov A.E., Gurzhiy V.V., Kochergina A.R., Sakhonenkova A.P., Tyupina M.Yu., Chistyi L.S., Pechertseva E.A. // Radiochemistry. 2024. Vol. 66. N 4. P. 405–415. https://doi.org/10.1134/S1066362224040027
  6. Ghosh S., Das A.K., Begum N., Haworh D.T., Lineman S.V., Gardinier J.F., Siddiquee T.A., Bennett D.W., Nordlander E., Hogarth G., Kabir S.E. // Inorg. Chim. Acta. 2009. Vol. 362. N 15. P. 5175–5182. https://doi.org/10.1016/j.ica.2009.09.021
  7. Miroslavov A.E., Lumpov A.A., Sidorenko G.V., Levitskaya E.M., Gorshkov N.I., Suglobov D.N., Alberto R., Braband H., Gurzhiy V.V., Krivovichev S.V., Tananaev I.G. // J. Organomet. Chem. 2008. Vol. 693. N 1. P. 4–10. https://doi.org/10.1016/j.jorganchem.2007.09.032
  8. Борисова И.В., Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н., Щербакова Л.Л. // Радиохимия. 1991. Т. 33. N 4. С. 27–38.
  9. CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.43.90. 2023.
  10. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. Vol. 71. N 1. P. 3–8. https://doi.org/10.1107/S2053273314026370
  11. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. Vol. 71. N 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
  12. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. N 2. P. 339–341. https://doi.org/10.1107/S0021889808042726
  13. Roca Jungfer M., Abram U. // Inorg. Chem. 2021. Vol. 60. N 21. P. 16734–16753. https://doi.org/10.1021/acs.inorgchem.1c02599
  14. Roca Jungfer M., Elsholz L., Abram U. // Organometallics. 2021. Vol. 40. N 18. P. 3095–3112. https://doi.org/10.1021/acs.organomet.1c00274
  15. Roca Jungfer M., Elsholz L., Abram U. // Inorg. Chem. 2022. Vol. 61. N 6. P. 2980–2997. https://doi.org/10.1021/acs.inorgchem.1c03919
  16. Roca Jungfer M., Abram U. // Inorg. Chem. 2022. Vol. 61. N 20. P. 7765–7779. https://doi.org/10.1021/acs.inorgchem.2c00070
  17. Claude G., Puccio D., Roca Jungfer M., Hagenbach A., Spreckelmeyer S., Abram U. // Inorg. Chem. 2023. Vol. 62. N 31. P. 12445–12452. https://doi.org/10.1021/acs.inorgchem.3c01638
  18. Alberto R., Herrmann W.A., Kiprof P., Baumgärtner F. // Inorg. Chem. 1992. Vol. 31. N 5. P. 895–899. https://doi.org/10.1021/ic00031a035
  19. Cook J., Davison A., Davis W.M., Jones A.G. // Organometallics. 1995. Vol. 14. N 2. P. 650–655. https://doi.org/10.1021/om00002a012
  20. Miroslavov A.E., Britvin S.N., Braband H., Alberto R., Stepanova E.S., Shevyakova A.P., Sidorenko G.V., Lumpov A.A. // J. Organomet. Chem. 2019. Vol. 896. P. 83–89. https://doi.org/10.1016/j.jorganchem.2019.05.029
  21. Sidorenko G.V., Miroslavov A.E., Tyupina M.Yu. // Coord. Chem. Rev. 2023. Vol. 476. Article 214911. https://doi.org/10.1016/j.ccr.2022.214911
  22. Lorenz B., Findeisen M., Olk B., Schmidt K. // Z. Anorg. Allg. Chem. 1988. Vol. 566. N 1. P. 160–168. https://doi.org/10.1002/zaac.19885660121
  23. Horn E., Onai S. // Z. Kristallogr.—New Cryst. Struct. 2001. Vol. 216. P. 454–456.
  24. Abram U., Alberto R., Dilworth J.R., Zheng Y., Ortner K. // Polyhedron. 1999. Vol. 18. N 23. P. 2995–3003. https://doi.org/10.1016/S0277-5387(99)00216-8
  25. Beckett M.A., Brassington D.S., Coles S.J., Gelbrich T., Light M.E., Hursthouse M.B. // J. Organomet. Chem. 2003. Vol. 688. N 1–2. P. 174–180. https://doi.org/10.1016/j.jorganchem.2003.08.043
  26. De Oliveira M., Horner G.M., Seiffert M., Bortoluzzi A.J. // J. Chem. Crystallogr. 1999. Vol. 29. N 2. P. 193–197. https://doi.org/10.1023/A:1009522111261
  27. Britvin S.N., Lotnyk A. // J. Am. Chem. Soc. 2015. Vol. 137. N 16. P. 5526–5535. https://doi.org/10.1021/jacs.5b01851
  28. Dalal M. A Textbook of Physical Chemistry. Dalal Inst., 2017. Vol. 1. 466 p.
  29. Manicum A.-L., Alexander O., Schutte-Smith M., Visser H.G. // J. Mol. Struct. 2020. Vol. 1209. Article 127953. https://doi.org/10.1016/j.molstruc.2020.127953
  30. Mazzi U., Bismondo A., Kotsev N., Clemente D.A. // J. Organomet. Chem. 1977. Vol. 135. N 2. P. 177–182. https://doi.org/10.1016/S0022-328X(00)80858-X
  31. Борисова И.В. Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н. // Радиохимия. 1991. Vol. 33. N 3. C. 1–8.
  32. Bélanger S., Hupp J.T., Stern C.L. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. Vol. 54. N 11. P. 1596–1600. https://doi.org/10.1107/S0108270198006398
  33. Franklin B.R., Herrick R.S., Ziegler C.J., Çetin A., Barone N., Condon L.R. // Inorg. Chem. 2008. Vol. 47. N 13. P. 5902–5909. https://doi.org/10.1021/ic800363w

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025