Optimal Temperatures and Dose Rates in Radiation-Thermal Processing of Oil Bitumen Sands

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article presents the results of studies of the effect of heat and ionizing radiation on oil extraction from natural bitumen sands (BS) of Azerbaijan. The combined effect of heat (20–500°C) and ionizing radiation at dose rates of 1 and 470 Gy/s was studied. The reactions of radical products generated by ionizing radiation depend on the temperature and rate of their generation, determined by the radiation power. The ratio of the rates of thermal and radiation-thermal reactions is the most universal characteristic. This value is a function of temperature and dose rate. The temperature and dose rate intervals for radiation-thermal processing of oil bitumen sands are calculated. The results obtained allow us to estimate the possibility of obtaining oil products by the radiation-thermal (RT) method. The use of radiation technologies for the organization of industrial production of synthetic oil from natural bitumen sands and heavy oils will have a positive effect from the point of view of environmental protection, since materials that pollute the environment are used in the production of electricity.

Texto integral

Acesso é fechado

Sobre autores

L. Jabbarova

Institute of Radiation Problems, National Academy of Sciences of Azerbaijan

Autor responsável pela correspondência
Email: clala@mail.ru
Azerbaijão, F. Agayeva str. 9, Baku, AZ1143

I. Mustafaev

Azerbaijan University of Architecture and Construction

Email: clala@mail.ru
Azerbaijão, Baku, AZ1143

Bibliografia

  1. Алиев А. // Президентская библиотека АР. 2010. № 1 (5). С. 10.
  2. Алиев А.А., Аббасов О.Р., Гусейнов А.Р., Балогланов Э.Э., Ахундов Р.В. // Труды молодых ученых. Баку, 2012. № 5. С. 66–78.
  3. Общие сведения о битумах. URL: http://www.trader-oil.ru/informatsiya/bitumy-info/obshchayainformatsiya-o-bitumakh/
  4. Халикова Д.А., Петров С.М., Башкирцева Н.Ю. // Вестн. КНИТУ. 2013. N 3. С. 217–221.
  5. Онгарбаев Е.К., Иманбаев М., Тилеуберди Е., Головко А.К. // Горение и плазмохимия. 2017. Т. 15. № 2. С. 148–155.
  6. Таубаева Г.Ж., Буканова С.К., Буканова А.С., Кайрлиева Ф.Б. // Молодой ученый. 2022. № 11 (406). С. 1–6.
  7. Ишмухамедова Н.К., Шакуликова Г.Т., Каримов О.Х., Шпынева М.А. // Нефтегазовое дело. 2022. Т. 20. № 2. С. 58–66.
  8. Онгарбаев Е.К., Досжанов Е.О., Мансуров З.А. НАЗВАНИЕ ИСТОЧНИКА? Алматы: Қазақ, 2017. 498 с.
  9. Шоймуратов Т.Х., Юсупов Ш.К. // Матер. республиканской научной и научно-практической конференции “Актуальные проблемы геологического образования в республике и перспективы развития наук о Земле”. Ташкент, 2020. С. 245–249.
  10. Ишмухамедова Н.К. // Нефть и газ. 2021. № 4(124). С. 80–90.
  11. Калимуллаулы E., Онгарбаев Е., Тилеуберди Е., Иманбаев Е., Мансуров З.А. // Горение и плазмохимия. 2021. Т. 19. № 4. С. 41–45.
  12. Sultanov F., Tileuberdi Ye., Imanbayev Ye., Ongarbayev Ye., Tuleutaev B., Mansurov Z., Khasseinov K. // J. Petrol. Environ. Biotechnol. 2015. Vol. 6. N 5. P. 61.
  13. Мансуров З.А., Онгарбаев Е.К., Смагулова Г., Тилеуберди Е., Байкенов М.И., Кайдар Б.Б. // Химия в интересах устойчивого развития. 2021. № 5. С. 576–590.
  14. Ермекова А.С., Тилеуберди Е., Онгарбаев Е.К., Масалимова Б.К. // Новости науки Казахстана. 2021 № 2(149). С. 237–244.
  15. Пикаев А.К. // ХВЭ. 2001. Т. 35. № 3. С. 175–187.
  16. Hosseinpour M., Ahmadi S.J., Fatemi S. // J. Supercrit. Fluids. 2015. Vol. 100. P. 70–78.
  17. Okawa H., Hosokawa R., Saito T., Nakamura T., Kawamura Y. // Proc. Symp. on Ultrasonic Electronics. 2010. Vol. 31. P. 373–374.
  18. Parkinson G. // Chem. Eng. 2002. Vol. 109. N 5. P. 27–31.
  19. Minoz V.A., Kasperski K.L. // Petrol. Sci. Technol. 2003. Vol. 21. N 9. P. 1509–1529.
  20. Junaid A.S.M., Street C., Wang W., Rahman M.M., An W., McCaffrey W.C., Kuznicki S.M. // Fuel. 2012. Vol. 94. P. 457–464.
  21. Fumoto E., Sato S., Takanohashi T. // Energy Fuels. 2011. Vol. 25. P .524–527.
  22. Джаббарова Л.Ю., Мустафаев И.И., Захаров З.Ш. // Хим. безопасность. 2024. T. 8. N 1. С. 92–108.
  23. Jabbarova L.Yu., Mustafaev I.I., Gasanalieva N.N. //Radiochemistry. 2023. Vol. 65. N 6. P. 584–592.
  24. Jabbarova L.Yu., Mustafaev I.I., Ibadov N.A. // J. Appl. Spectrosc. 2022. Vol. 89. P. 418–425.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Temperature dependences of gas accumulation during RT transformation of BP. P = 1 Gy/s.

Baixar (474KB)
3. Fig. 2. Temperature dependences of gas product composition (a, vol%) during RT transformation of BP. P = 1 Gy/s.

Baixar (393KB)
4. Fig. 3. Temperature dependences of the rate of hydrogen formation (W × 10-14, molek/(g-s)) during RT transformation of BP at dose rate P = 1 Gy/s.

Baixar (153KB)
5. Fig. 4. Temperature dependence of the rate of hydrogen formation (W × 10-14, molek/(g-s)) during RT transformation of BP at dose rate P = 470 Gy/s.

Baixar (165KB)
6. Fig. 5. Temperature dependences of gas formation (N × 10-18, moleq/g) during RT transformation of BP at dose rate P = 470 Gy/s.

Baixar (242KB)
7. Fig. 6. Hydrogen formation rate during thermal and radiation-thermal decomposition of BP at dose rate P = 470 Gy/s, T > 300С.

Baixar (153KB)
8. Fig. 7. Temperature dependences of the radiation-chemical yield of hydrogen (a) and methane (b) in Arrhenius coordinates. P = 1 Gy/c.

Baixar (286KB)
9. Fig. 8. Dependence of the dose rate interval on temperature.

Baixar (459KB)
10. Fig. 9. Dependence of the temperature interval on the dose rate.

Baixar (109KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024