A Study of the Radionuclide Diffusion in Clay Materials Taking into Account the Coupled Physicochemical Processes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In an experimental study of the diffusion of manmade radionuclides in pore solutions of compacted clay materials, in addition to the sorption retention on the surface of clay minerals, which is typical for many radionuclides, effects caused by other physicochemical processes occurring simultaneously with the diffusion were observed. These processes, called coupled, are associated mainly with the precipitation—dissolution of radionuclide compounds in pore solutions, as well as with the sorption—desorption of radionuclide particles on the surface of solid phases as a result of their diffusion transfer in the pore medium together with chemically contrasting components of leachates of technogenic materials used in the radioactive waste disposal. Without taking into account the coupled processes, it is impossible to correctly interpret the experimental results, as well as to reliably predict the migration of manmade radionuclides and justify the safety of radioactive waste disposal facilities.

Sobre autores

K. Martynov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mark0s@mail.ru
Moscow, Russia

N. Andryushchenko

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

A. Volkova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

E. Zakharova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Delage P., Cui Y.J., Tang A.M. // J. Rock Mech. Geotech. Eng. 2010. Vol. 2. N 2. P. 111.
  2. Dohrmann R., Kaufhold S., Lundqvist B. // Developments in Clay Science / Eds. F. Bergaya, G. Lagaly. Elsevier, 2013. Vol. 5. Ch. 5.4. P. 677.
  3. Sellin P., Leupin O.X. // Clays Clay Miner. 2013. Vol. 61. N 6. P. 477.
  4. Birgersson M., Hedström M., Karnland O., Sjöland A. // Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste / Eds. M.J. Apted, J. Ahn. Woodhead, 2017. 2nd ed. Ch. 12. P. 319.
  5. Анисимов Н.А., Куваев А.А. // Радиоактивные отходы. 2022. № 3. С. 97.
  6. Анисимов Н.А., Куваев А.А., Сизоненко Е.В. // Радиоактивные отходы. 2023. № 4. С. 89.
  7. Мартынов К.В., Захарова Е.В., Дорофеев А.Н., Зубков А.А., Прищеп А.А. // Радиоактивные отходы. 2020. № 4. С. 42.
  8. Мартынов К.В., Захарова Е.В. // Радиохимия. 2024. Т. 66. № 4. С. 388.
  9. Мартынов К.В., Захарова Е.В. // Радиохимия. 2024. Т. 66. № 2. С. 191.
  10. Мартынов К.В., Коневник Ю.В., Захарова Е.В. // Радиохимия. 2023. Т. 65. № 4. С. 364.
  11. Meier L.P., Kahr G. // Clays Clay Miner. 1999. Vol. 47. N 3. P. 386.
  12. Сорокин В.Т., Павлов Д.И., Кащеев В.А., Мусатов Н.Д., Баринов А.С. // Радиоактивные отходы. 2020. № 2. С. 56.
  13. Мартынов К.В., Андрющенко Н.Д., Некрасов А.Н., Захарова Е.В. // Радиоактивные отходы. 2023. № 3. С. 44.
  14. Garcia-Gutierrez M., Cormenzana J.L., Missana T., Mingarro M., Molinero J. // J. Iber. Geol. 2006. Vol. 32. N 1. P. 37.
  15. Park C.K., Park H.H. // J. Nucl. Sci. Technol. 1992. Vol. 29. N 8. P. 786.
  16. Gurumoorthy C., Singh D.N. // J. Radioanal. Nucl. Chem. 2004. Vol. 262. N 3. P. 639.
  17. Lu C.J., Liu C.L., Chen T., Wang J., Wang X.Y., Su R., Sun J.Y., Yang R.X., Zhang X.S. // Radiochim. Acta. 2008. Vol. 96. N 2. P. 111.
  18. Song L., Feng X., Liang J., Zhang Y., Wang J. // Radiochim. Acta. 2009. Vol. 97. N 10. P. 581.
  19. Kong J., Lee C.-P., Sun Y., Hua R., Liu W., Wang Z., Li Y., Wang Y. // J. Radioanal. Nucl. Chem. 2021. Vol. 328. P. 717.
  20. Tsai T.-L., Tsai S.-C., Chang D.-M., Cheng W.-H. // J. Radioanal. Nucl. Chem. 2021. Vol. 330. P. 1317.
  21. Tachi Y., Yotsuji K. // Geochim. Cosmochim. Acta. 2014. Vol. 132. P. 75.
  22. Wu T., Geng Z., Feng Z., Pan G., Shen Q. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 5. P. 2311.
  23. Wang C., Myshkin V.F., Khan V.A., Panamareva A.N. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 3401.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025