Reaction of Technetium(I) Tricarbonyl Hexafluoroacetylacetonate Complexes with CCl4: Formation and Crystal Structure of [99ТсСl(СО)3(РРh3)2] Stereoisomers and of fac-[99ТсСl(СО)35Н5N)2]

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In the course of prolonged interaction in the system consisting of [99Тс(hfa)(СО)4] (hfa is the anion of 1,1,1,5,5,5-hexafluoroacetylacetone), triphenylphosphine (РРh3) or pyridine (py), and CCl4, the hfa anion is gradually displaced by the chloride ion with the formation of the complexes fac- and mer-[99ТсСl(СО)3(РРh3)2] and fac-[99ТсСl(СО)3(py)2]. The crystal and molecular structures of the complexes were determined. The complex fac [99ТсСl(СО)3(РРh3)2] is the first structurally confirmed example of technetium(I) tricarbonyl bis(triphenylphosphine) complexes of facial structure.

作者简介

G. Sidorenko

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI

Email: gevasid@mail.ru
St. Petersburg, Russia; Ozyorsk, Russia

V. Gurzhiy

St. Petersburg State University

St. Petersburg, Russia

A. Miroslavov

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI; St. Petersburg State University

St. Petersburg, Russia; Ozyorsk, Russia; St. Petersburg, Russia

A. Kochergina

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI; St. Petersburg State University

St. Petersburg, Russia; Ozyorsk, Russia; St. Petersburg, Russia

M. Tyupina

Khlopin Radium Institute; Ozyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI

St. Petersburg, Russia; Ozyorsk, Russia

参考

  1. Sagnou M., Benaki D., Triantis C., Tsotakos T., Psycharis V., Raptopoulou C.P., Pirmettis I., Papadopoulos M., Pelecanou M. // Inorg. Chem. 2011. Vol. 50. N 4. P. 1295–1303. https://doi.org/10.1021/ic102228u
  2. Triantis C., Tsotakos T., Tsoukalas C., Sagnou M., Raptopoulou C., Terzis A., Psycharis V., Pelecanou M., Pirmettis I., Papadopoulos M. // Inorg. Chem. 2013. Vol. 52. N 22. P. 12995–13003. https://doi.org/10.1021/ic401503b
  3. Benny P.D., Fugate G.A., Ganguly T., Twamley B., Bučar D.-K., MacGillivray L.R. // Inorg. Chim. Acta. 2011. Vol. 365. N 1. P. 356–362. https://doi.org/10.1016/j.ica.2010.09.050
  4. Sagnou M., Tsoukalas C., Triantis C., Raptopoulou C.P., Terzis A., Pirmettis I., Pelecanou M., Papadopoulos M. // Inorg. Chim. Acta. 2010. Vol. 363. N 8. P. 1649–1653. https://doi.org/10.1016/j.ica.2010.01.004
  5. Sidorenko G.V., Miroslavov A.E., Gurzhiy V.V., Kochergina A.R., Sakhonenkova A.P., Tyupina M.Yu., Chistyi L.S., Pechertseva E.A. // Radiochemistry. 2024. Vol. 66. N 4. P. 405–415. https://doi.org/10.1134/S1066362224040027
  6. Ghosh S., Das A.K., Begum N., Haworh D.T., Lineman S.V., Gardinier J.F., Siddiquee T.A., Bennett D.W., Nordlander E., Hogarth G., Kabir S.E. // Inorg. Chim. Acta. 2009. Vol. 362. N 15. P. 5175–5182. https://doi.org/10.1016/j.ica.2009.09.021
  7. Miroslavov A.E., Lumpov A.A., Sidorenko G.V., Levitskaya E.M., Gorshkov N.I., Suglobov D.N., Alberto R., Braband H., Gurzhiy V.V., Krivovichev S.V., Tananaev I.G. // J. Organomet. Chem. 2008. Vol. 693. N 1. P. 4–10. https://doi.org/10.1016/j.jorganchem.2007.09.032
  8. Борисова И.В., Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н., Щербакова Л.Л. // Радиохимия. 1991. Т. 33. N 4. С. 27–38.
  9. CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.43.90. 2023.
  10. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. Vol. 71. N 1. P. 3–8. https://doi.org/10.1107/S2053273314026370
  11. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. Vol. 71. N 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
  12. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. N 2. P. 339–341. https://doi.org/10.1107/S0021889808042726
  13. Roca Jungfer M., Abram U. // Inorg. Chem. 2021. Vol. 60. N 21. P. 16734–16753. https://doi.org/10.1021/acs.inorgchem.1c02599
  14. Roca Jungfer M., Elsholz L., Abram U. // Organometallics. 2021. Vol. 40. N 18. P. 3095–3112. https://doi.org/10.1021/acs.organomet.1c00274
  15. Roca Jungfer M., Elsholz L., Abram U. // Inorg. Chem. 2022. Vol. 61. N 6. P. 2980–2997. https://doi.org/10.1021/acs.inorgchem.1c03919
  16. Roca Jungfer M., Abram U. // Inorg. Chem. 2022. Vol. 61. N 20. P. 7765–7779. https://doi.org/10.1021/acs.inorgchem.2c00070
  17. Claude G., Puccio D., Roca Jungfer M., Hagenbach A., Spreckelmeyer S., Abram U. // Inorg. Chem. 2023. Vol. 62. N 31. P. 12445–12452. https://doi.org/10.1021/acs.inorgchem.3c01638
  18. Alberto R., Herrmann W.A., Kiprof P., Baumgärtner F. // Inorg. Chem. 1992. Vol. 31. N 5. P. 895–899. https://doi.org/10.1021/ic00031a035
  19. Cook J., Davison A., Davis W.M., Jones A.G. // Organometallics. 1995. Vol. 14. N 2. P. 650–655. https://doi.org/10.1021/om00002a012
  20. Miroslavov A.E., Britvin S.N., Braband H., Alberto R., Stepanova E.S., Shevyakova A.P., Sidorenko G.V., Lumpov A.A. // J. Organomet. Chem. 2019. Vol. 896. P. 83–89. https://doi.org/10.1016/j.jorganchem.2019.05.029
  21. Sidorenko G.V., Miroslavov A.E., Tyupina M.Yu. // Coord. Chem. Rev. 2023. Vol. 476. Article 214911. https://doi.org/10.1016/j.ccr.2022.214911
  22. Lorenz B., Findeisen M., Olk B., Schmidt K. // Z. Anorg. Allg. Chem. 1988. Vol. 566. N 1. P. 160–168. https://doi.org/10.1002/zaac.19885660121
  23. Horn E., Onai S. // Z. Kristallogr.—New Cryst. Struct. 2001. Vol. 216. P. 454–456.
  24. Abram U., Alberto R., Dilworth J.R., Zheng Y., Ortner K. // Polyhedron. 1999. Vol. 18. N 23. P. 2995–3003. https://doi.org/10.1016/S0277-5387(99)00216-8
  25. Beckett M.A., Brassington D.S., Coles S.J., Gelbrich T., Light M.E., Hursthouse M.B. // J. Organomet. Chem. 2003. Vol. 688. N 1–2. P. 174–180. https://doi.org/10.1016/j.jorganchem.2003.08.043
  26. De Oliveira M., Horner G.M., Seiffert M., Bortoluzzi A.J. // J. Chem. Crystallogr. 1999. Vol. 29. N 2. P. 193–197. https://doi.org/10.1023/A:1009522111261
  27. Britvin S.N., Lotnyk A. // J. Am. Chem. Soc. 2015. Vol. 137. N 16. P. 5526–5535. https://doi.org/10.1021/jacs.5b01851
  28. Dalal M. A Textbook of Physical Chemistry. Dalal Inst., 2017. Vol. 1. 466 p.
  29. Manicum A.-L., Alexander O., Schutte-Smith M., Visser H.G. // J. Mol. Struct. 2020. Vol. 1209. Article 127953. https://doi.org/10.1016/j.molstruc.2020.127953
  30. Mazzi U., Bismondo A., Kotsev N., Clemente D.A. // J. Organomet. Chem. 1977. Vol. 135. N 2. P. 177–182. https://doi.org/10.1016/S0022-328X(00)80858-X
  31. Борисова И.В. Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н. // Радиохимия. 1991. Vol. 33. N 3. C. 1–8.
  32. Bélanger S., Hupp J.T., Stern C.L. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. Vol. 54. N 11. P. 1596–1600. https://doi.org/10.1107/S0108270198006398
  33. Franklin B.R., Herrick R.S., Ziegler C.J., Çetin A., Barone N., Condon L.R. // Inorg. Chem. 2008. Vol. 47. N 13. P. 5902–5909. https://doi.org/10.1021/ic800363w

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025