Lateral distribution functions of the electron-photon component of the EAS registered with the NEVOD-EAS array

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A comparison of the accuracy of reconstruction of the shower size and coordinates of the axes of extensive air showers based on the response of the NEVOD-EAS array are presented. The reconstruction is based on various functions of the lateral distribution of particles. A comparison of the lateral distribution of EAS particles according to MC and experimental data is given.

Texto integral

Acesso é fechado

Sobre autores

E. Yuzhakova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Autor responsável pela correspondência
Email: EAYuzhakova@mephi.ru
Rússia, Moscow

M. Amelchakov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EAYuzhakova@mephi.ru
Rússia, Moscow

A. Bogdanov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EAYuzhakova@mephi.ru
Rússia, Moscow

D. Gromushkin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EAYuzhakova@mephi.ru
Rússia, Moscow

A. Konovalova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EAYuzhakova@mephi.ru
Rússia, Moscow

N. Ponomareva

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EAYuzhakova@mephi.ru
Rússia, Moscow

S. Khokhlov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EAYuzhakova@mephi.ru
Rússia, Moscow

I. Shulzhenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: EAYuzhakova@mephi.ru
Rússia, Moscow

Bibliografia

  1. I. I. Yashin, M. B. Amelchakov, I. I. Astapov, N. S. Barbashina, A. G. Bogdanov, F. A. Bogdanov, V. V. Borog, A. Chiavassa, A. N. Dmitrieva, D. M. Gromushkin, S. S. Khokhlov, V. V. Kindin, R. P. Kokoulin, K. G. Kompaniets, A. Yu. Konovalova, A. A. Kovylyaeva et al., JINST 16, T08014 (2021).
  2. M. B. Amelchakov, N. S. Barbashina, A. G. Bogdanov, A. Chiavassa, D. M. Gromushkin, S. S. Khokhlov, V. V. Kindin, R. P. Kokoulin, K. G. Kompaniets, A. Yu. Konovalova, V. V. Ovchinnikov, N. A. Pasyuk, A. A. Petrukhin, I. A. Shulzhenko, V. V. Shutenko, I. I. Yashin et al., Nucl. Instrum. Methods A 1026, 166184 (2022).
  3. K. Greisen, Ann. Rev. Nucl. Sci. 10, 63 (1960).
  4. Yu. A. Fomin, N. N. Kalmykov, I. S. Karpikov, G. V. Kulikov, M. Yu. Kuznetsov, G. I. Rubtsov, V. P. Sulakova, and S. V. Troitsky, JINST 11, T08005 (2016).
  5. R. D. Monkhoev, N. M. Budnev, D. M. Voronin, A. R. Gafarov, O. A. Gress, T. I. Gress, O. G. Grishin, A. N. Dyachok, S. N. Epimakhov, D. P. Zhurov, A. V. Zagorodnikov, V. L. Zurbanov, A. L. Ivanova, N. N. Kalmykov, Yu. A. Kazarina, S. N. Kiryuhin et al., Bull. Russ. Acad. Sci.: Phys. 81, 468 (2017).
  6. A. P. Chubenko, A. L. Shepetov, V. P. Antonova, R. U. Beisembayev, A. S. Borisov, O. D. Dalkarov, O. N. Kryakunova, K. M. Mukashev, R. A. Mukhamedshin, R. A. Nam, N. F. Nikolaevsky, V. P. Pavlyuchenko, V. V. Piscal, V. S. Puchkov, V. A. Ryabov, T. Kh. Sadykov et al., Nucl. Instrum. Methods A 832, 158 (2016).
  7. A. Chiavassa, W. D. Apel, J. C. Arteaga-Velázquez, K. Bekk, M. Bertaina, J. Blümer, H. Bozdog, I. M. Brancus, E. Cantoni, F. Cossavella, K. Daumiller, V. de Souza, F. Di Pierro, P. Doll, R. Engel, D. Fuhrmann et al., EPJ Web Conf. 208, 03002 (2019).
  8. EAS-TOP Collab. (M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco, M. Bertaina, C. Castagnoli, A. Castellina, A. Chiavassa, G. Cini Castagnoli, B. D’Ettorre Piazzoli, G. Di Sciascio, W. Fulgione, P. Galeotti, P. L. Ghia et al.), Astropart. Phys. 10, 1 (1999).
  9. R. I. Raikin, A. A. Lagutin, N. Inoue, and A. Misaki, in Proceedings of the 27th International Cosmic Ray Conference, Hamburg, 2001, vol. 1, p. 290.
  10. K. Kamata and J. Nishimura, Prog. Theor. Phys. Suppl. 6, 93 (1958).
  11. A. A. Lagutin, A. V. Pljasheshnikov, and V. V. Uchaikin, in Proceedings of the 16th International Cosmic Ray Conference, Tokyo, 1979, Ed. by S. Miyake (Japan, Tokyo, 1979), vol. 7, p. 18.
  12. N. N. Kalmykov, G. V. Kulikov, V. P. Sulakov, and Yu. A. Fomin, Bull. Russ. Acad. Sci.: Phys. 71, 522 (2007).
  13. Yu. A. Fomin, N. N. Kalmykov, V. N. Kalmykov, G. V. Kulikov, V. I. Solovjeva, V. P. Sulakov, and E. A. Vishnevskaya, in Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, 2003, Ed. by T. Kajita (Japan, IUPAP, 2003), vol. 1, p. 119.
  14. Yu. A. Fomin, N. N. Kalmykov, J. Kempa, G. V. Kulikov, and V. P. Sulakov, Nucl. Phys. B Proc. Suppl. 175–176, 334 (2008).
  15. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, Report FZKA6019 (Forschungszentrum Karlsruhe GmbH, Karlsruhe, 1998).
  16. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie et al., Nucl. Instrum. Methods A 506, 250 (2003).
  17. SciPy, SciPy Reference Guide, https://docs.scipy.org/doc/scipy/reference/ (2015).
  18. A. A. Lagutin, R. I. Raikin, N. Inoue, and A. Misaki, J. Phys. G: Nucl. Part. Phys. 28, 1259 (2002).
  19. Н. Н. Калмыков, Г. В. Куликов, В. П. Сулаков, Ю. А. Фомин, Вестн. Моск. Ун-та. Сер. 3. Физ. астрон. 1, 32 (2007).
  20. P. K. F. Grieder, Extensive Air Showers: High Energy Phenomena and Astrophysical: a Tutorial, Reference Manual and Data Book (Springer, Berlin, London, 2010), vol. 1.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Coordinates of the NEVOD-SHAL detection stations: 1 — external DS; 2 — internal DS; 3 — DS of the central cluster of the facility.

Baixar (66KB)
3. Fig. 2. Distribution of events n by distance R between the reconstructed (LSM with classical LCG function) and simulated EAS axes.

Baixar (68KB)
4. Fig. 3. Correlations of the reconstructed Ne.voss (LS with the classical LCG function) and the simulated Ne.mod of the shower power. The line in the figure shows direct proportionality.

Baixar (47KB)
5. Fig. 4. Distribution of events n by the logarithm of the ratio of the reconstructed (LSM with the classical LCM function) and simulated power at the simulated value lgNе.mod = 5 ± 0.1.

Baixar (48KB)
6. Fig. 5. Average PDFs: 1 — experimental data; 2 — simulation results; 3 — theoretical particle density according to the NCG function (lgNе = 5, S = 1.36).

Baixar (41KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024