Laser Cooling of Lithium-6 Atoms in a Bichromatic Light Field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The kinetics of 6Li atoms in a bichromatic laser field exciting transitions on D2 and D1 lines is investigated. The model takes into account the complex real structure of energy levels of 6Li (including the Zeeman degeneracy) as well as the nonuniform spatial polarization of the laser field. It is found that detuning and the polarization configuration of the light field component of the resonant D2 line of the 6Li atom are of fundamental importance for laser cooling. The possibility of cooling of atoms below the Doppler limit is demonstrated.

Sobre autores

R. Il'enkov

Institute of Laser Physics, Russian Academy of Sciences

Email: ilenkov.roman@gmail.com
Novosibirsk, 630090 Russia

O. Prudnikov

Novosibirsk State University;Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Email: viyudin@mail.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia

A. Kirpichnikova

Institute of Laser Physics, Russian Academy of Sciences

Email: ilenkov.roman@gmail.com
Novosibirsk, 630090 Russia

A. Taychenachev

Novosibirsk State University;Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

Email: viyudin@mail.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia

V. Yudin

Novosibirsk State University;Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences;Novosibirsk State Technical University

Autor responsável pela correspondência
Email: viyudin@mail.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia;Novosibirsk, 630073 Russia

Bibliografia

  1. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Rev. Mod. Phys. 87, 637 (2015).
  2. A. V. Taichenachev, V. I. Yudin, and S. N. Bagaev, Phys. Usp. 59, 184 (2016).
  3. G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli, and J. Ye, Phys. Rev. Lett. 120, 103201 (2018).
  4. E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002).
  5. W. Ketterle, Rev. Mod.Phys. 74, 1131 (2002).
  6. A. V. Turlapov, JETP Lett. 95, 96 (2012).
  7. K. Bongs, M. Holynski, J. Vovrosh et al., Nat. Rev. Phys. 1, 731 (2019).
  8. H. B. Dang, A. C. Maloof, and M. V. Romalis, Appl. Phys. Lett. 97, 151110 (2010).
  9. I. I. Ryabtsev, N. N. Kolachevsky, and A. V. Taichenachev, Quantum Electron. 51, 463 (2021).
  10. Н. Н. Колачевский, К. Ю. Хабарова, И. В. Заливако, И. А. Семериков, А. С. Борисенко, И. В. Шерстов, С. Н. Багаев, А. А. Луговой, О. Н. Прудников, А. В. Тайченачев, С. В. Чепуров, Ракетно-космическое приборостроение и информационные системы 5, 13 (2018).
  11. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms, Gordon and Breach Science Publishers, New York (1987).
  12. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms, World Scienti c, Singapore (1990).
  13. H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping, Springer Science and Business Media (1990).
  14. J. Dalibard and C. Cohen-Tannoudji, J. Phys. B: At. Mol. Phys. 18, 1661 (1985).
  15. J. Javanainen, Phys. Rev. A 44, 5857 (1991).
  16. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).
  17. О. Н. Прудников, А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, ЖЭТФ 115, 791 (1999).
  18. A. A. Kirpichnikova, O. N. Prudnikov, R. Ya. Il'enkov, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 50, 939 (2020).
  19. M. Riedmann, H. Kelkar, T. Wubbena, A. Pape, A. Kulosa, K. Zipfel, D. Fim, S.Ruhmann, J. Friebe, W. Ertmer, and E. Rasel, Phys. Rev. A 86, 043416 (2012).
  20. R. Hobson, W. Bowden, A. Vianello, I. R. Hill, and P. Gill, Phys. Rev. A, 101, 013420 (2020).
  21. O. N. Prudnikov, A. V. Taichenachev, and V. I. Yudin, JETP Letters, 102, 576 (2015).
  22. E. Kalganova, O. Prudnikov, G. Vishnyakova, A. Golovizin, D. Tregubov, D. Sukachev, K. Khabarova, V. Sorokin, and N. Kolachevsky, Phys. Rev. A 96, 033418 (2017).
  23. Л. П. Питаевский, УФН 168, 64 (1998).
  24. M. Yu. Kagan and A. V. Turlapov., Phys. Usp. 62, 215 (2019).
  25. Zh. Lin, K. Shimizu, M. Zhan, F. Shimizu, H. Takuma, Jap. J. of Appl. Phys. 30, 1324 (1991).
  26. A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio,M. Zaccanti, and G. Roati, Phys. Rev. A 90, 043408 (2014).
  27. R. Grimm, A. Mosk, S. Jochim, H. Moritz, Th. Els¨asser, and M. Weidemu¨ller, Opt. Lett. 26, 1837 (2001).
  28. R. Ya. Il'enkov, A. A. Kirpichnikova, and O. N. Prudnikov, Quantum Electron. 52, 137 (2022).
  29. S. M. Yoo and J. Javanainen, Phys. Rev. A 45, 3071 (1992).
  30. O. N. Prudnikov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP 98, 438 (2004).
  31. А. В. Безвербный, О. Н. Прудников, А. В. Тайченачев, А. М. Тумайкин, В. И. Юдин, ЖЭТФ 123, 437 (2003).
  32. S. Chang and V. Minogin, Phys. Rep. 365, 65 (2002).
  33. C. S. Adams and E. Riis, Progr. in Quantum Electron. 21, 1 (1997).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023