Oxidation of the Styrene Epoxide – Hydroquinone – Copper(II) Chloride Ternary System in a Methanol Solution

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The consumption of styrene epoxide (SE) and hydroquinone (HQ) in a ternary TrS system (SE – HQ – Cu(II)) in an oxygen atmosphere in a methanol solution was studied. Oxygen uptake by the triple system SE – HQ – CuCl2 was studied manometrically. Expression of velocity in terms of reagent concentrations V = k [Cu(II)]1 [HQ]0 [SE]0, the effective oxidation rate constant k = 1.82×105 exp(– 40 kJ mol-1/RT) s-1, (308–323) K. The mechanism of oxidation of TrS is discussed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Petrov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: plv@acp.ac.ru
Ресей, Chernogolovka

V. Solyanikov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: plv@acp.ac.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Ch. Schneider, Synthesis 23, 3919 (2006). https://doi.org/ 10.1055/s-2006-950348
  2. G. Sabitha, R. Satheesh Babu, M. Rajkumar, Ch. Srinivas Reddy, J.S. Yadav, Tetrahedron Lett. 42, 3955 (2001). https://doi.org/10.1016/S0040-4039(01)00622-0
  3. Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, H.-L. Jiang, Chem. Eur. J. 20, 1 (2014). https://doi.org/ 10.1002/chem. 201404104
  4. Y. Zhang, M. Wang, P. Li, L. Wang, Org. Lett. 14, 2206 (2012). https://doi.org/10.1021/o1300391t
  5. D.A. Denisov, R.A. Novikov, Y.V. Tomilov, Russ. Chem. Bull. 70, 1568 (2021). https://doi.org/10.1007/S11172-021-3253-9
  6. R.E. Parker, N.S. Isaacs, Chem. Rev. 53, 737 (1959). https://doi.org/10.1021/cr50028a006
  7. A.M. Ross, T.M. Pohl, K. Piazza, M. Thomas, B. Fox, D.L. Whalen, J. Am. Chem. Soc. 104, 1658 (1982). https://doi.org/10.1021/ja00370a035
  8. A. Lundin, I. Panas, E. Ahlberg, J. Phys. Chem. A 111, 9087 (2007). https://doi.org/10.1021/jp073285b
  9. P.O. Wennberg, D.G. VanderVelde, N.C. Eddingsaas, J. Phys. Chem. A 114, 8106 (2010). https://doi.org/10.1021/jp103907c
  10. Z. Huan, Ch. Yung, Z. Ma, E.R. Gainer, D. Li, J. Phys. Chem. A 118, 1557 (2014). https://doi.org/10.1021/jp501310z
  11. L.V. Petrov, V.M. Solyanikov, Russ. Chem. Bull. 64, 107 (2015).
  12. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 10, 764 (2016). https://doi.org/10.1134/S1990793116050225
  13. L.V. Petrov, V.M. Solyanikov, Pet. Chem. 57, 734 (2017). https://doi.org/10.1134/S0965544117080114
  14. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 12, 1003 (2018). https://doi.org/10.1134/S1990793118060179
  15. L.V. Petrov, V.M. Solyanikov, Russ. Chem. Bull. 69, 1869 (2020). https://doi.org/10.1007/S11172-020-2972-7
  16. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 15, 599 (2021). https://doi.org/10.1134/S1990793121040084
  17. V.A. Menshov, V.D. Kancheva, O.L. Yablonskaya, A.V. Trofimov, Russ. J. Phys. Chem. B 15, 108 (2021). https://doi.org/10.1134/S1990793121010231
  18. I.F. Rusina, T.L. Veprintsev, R.F. Vasil’ev, Russ. J. Phys. Chem. B 16, 50 (2022). https://doi.org/10.1134/S1990793122010274
  19. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 15, 960 (2021). https://doi.org/10.1134/S1990793121060075
  20. L.V. Petrov, B. L. Psikha, V.M. Solyanikov, Pet. Chem. 49, 263 (2009).
  21. L.V. Petrov, V.M. Solyanikov, Pet. Chem. 39, 107 (1999).
  22. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 17, 1259 (2023). https://doi.org/10.1134/S1990793123060234

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Kinetics of transformation of the triple system ES– GC– CuCl2; experiments with the introduction of third components into the corresponding binary systems: light dots are an experiment with the introduction of ES into the dual system GC–CuCl2, dark dots are an experiment with the introduction of GC into the dual system ES–CuCl2, the moments of entry are marked with vertical arrows. Circles – ES, squares – GC, triangles – BX, diamonds – BA. Oxygen bubbling, [ES]0 = 0.69, [GC]0 = 0.031, [CuCl2] = 11.5 × 10-4 mol/L, solvent – methanol, 318 K.

Жүктеу (45KB)
3. 2. Kinetic curves of oxygen absorption: 1 – by the triple ES – GC – CuCl2 system; 2a – by the double ES – CuCl2 system; 2b – after the introduction of hydroquinone into the double system (marked with arrow); 3a – by the double GC – CuCl2 system; 3b – after the introduction of epoxide into the double system. [EC]0 = 0.35, [GC]0 = 0.031, [CuCl2] = 5.76 ×10-4 mol/L, solvent – methanol, 323 K.

Жүктеу (36KB)
4. 3. Kinetic curves of consumption of epoxide (1) and hydroquinone (2); accumulation curves of benzoquinone (3) and benzaldehyde (4) in a solution of the triple system ES – GC – CuCl2. Bubbling O2, [EC]0 = 0.69, [GC]0 = 0.031, [CuCl2] = 11.5 × 10-4 mol/L, solvent – methanol, 318 K.

Жүктеу (43KB)
5. 4. Dependences of the oxidation rate of the ES–GC –CuCl2 ternary system on [CuCl2] at [EC]0 = 0.69 and [GC]0 = 0.031 mol/L (1); on [EC] at [GC]0 = 0.031 and [CuCl2] = 5.8 ×10-4 mol/ll (2). Oxygen bubbling, solvent – methanol, 318 K.

Жүктеу (37KB)
6. Fig. 5. Dependences of the oxidation rate of the ES– GC – CuCl2 ternary system in a methanol solution (318 K) at [EC]0 = 0.69 and [CuCl2] = 5.8 × 10-4 mol/l: on [GC] (1) and on the oxygen content (vol. %) in the gas mixture at [GC]0 = 0.031 mol/L (2).

Жүктеу (27KB)
7. 6. Determination of the oxidation activation energy of the ES – GC – CuCl2 ternary system; Arrhenius dependence of lgV on 103/T; [ES]0 = 0.69, [GC]0 = 0.031, [CuCl2] = 9.3×10-4 mol/l, solvent – methanol.

Жүктеу (18KB)
8. Fig. 7. Kinetic curves 1-3 of benzoquinone accumulation at –CuCl2] = (2.9 ∙ 10-4, 5.8 ∙ 10-4, 11.5 ∙ 10-4 mol/l, respectively; dependence of the initial rates of accumulation of HC calculated from the tangents of the slope angles of dashed curves 1-3 on [CuCl2] (4). Oxygen bubbling, [ES]0 = 0.69, [GC]0 = 0.031, solvent – methanol, 318 K.

Жүктеу (53KB)

© Russian Academy of Sciences, 2024