Influence of silicon dioxide on the structure and dielectric properties of barium titanate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of silicon dioxide on the structure and dielectric properties of ceramic barium titanate was studied. The obtained results show that Si in concentrations up to 1 mol. % enters to the BaTiO3 lattice, forming the BaTi1-xSixO3 solid solution. Doping barium titanate with silicon leads to a decrease in the size of the crystal cell, a slight diffuseness of the ferroelectric phase transition, a decrease in its temperature and the appearance of signs of a relaxer ferroelectric.

Full Text

Restricted Access

About the authors

L. N. Korotkov

Voronezh State Technical University

Author for correspondence.
Email: l_korotkov@mail.ru
Russian Federation, Voronezh, 394026

N. A. Tolstykh

Voronezh State Technical University

Email: l_korotkov@mail.ru
Russian Federation, Voronezh, 394026

N. N. Borodin

Voronezh State Technical University

Email: l_korotkov@mail.ru
Russian Federation, Voronezh, 394026

M. A. Kashirin

Voronezh State Technical University

Email: l_korotkov@mail.ru
Russian Federation, Voronezh, 394026

R. G. Anisimov

Voronezh State Technical University

Email: l_korotkov@mail.ru
Russian Federation, Voronezh, 394026

S. V. Popov

Military Educational and Scientific Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy

Email: l_korotkov@mail.ru
Russian Federation, Voronezh, 394064

M. A. Pankova

Voronezh Institute of the Ministry of Internal Affairs of Russia

Email: l_korotkov@mail.ru
Russian Federation, Voronezh, 394065

References

  1. Прокопало О.И., Фесенко Е.Г., Гавриляченко В.Г. и др. Титанат бария. Ростов-на-Дону.: Изд. РГУ, 1970. 214 с.
  2. Смоленский Г.А. и др. Сегнетоэлектрики и антисегнетоэлектрики. Л.: Наука, 1971. 476 с.
  3. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
  4. Rabe K.M., Ahn C.H., Triscone J.-M. Physics of ferroelectrics: a modern perspective Berlin: Springer-Verlag, 2007. 388 p.
  5. Толстых Н.А., Короткова Т.Н., Аль Джаафари Ф.Д. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 9. С. 1196; Tolstykh N.A., Korotkova T.N., Al’ Dzhaafari F.D. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 9. P. 1086.
  6. Lemanov V.V., Smirnova E.P., Syrnikov P.P., Tarakanov E.A. // Phys. Rev. B. 1996. V. 54. No. 5. P. 3151.
  7. Gatea H.A., Shoja S.J., Albazoni H.J. // J. Miner. Met. Mater. Soc. 2023. V. 75. P. 4470.
  8. Weber U., Greuel G., Boettger U. et al. // J. Amer. Ceram. Soc. 2001. V. 84. No. 4. P. 759.
  9. Ciomaga C.E., Calderone R., Buscaglia M.T. et al. // J. Optoelectron. Adv. Mater. 2006. V. 8. No. 3. P. 944.
  10. Jeon H.-P., Lee S.-K., Kim S.-W. et al. // Mater. Chem. Phys. 2005. V. 94. No. 2—3. P. 185.
  11. Wang J., Tang L., Shenn B., Zhai J. // Ceram. Int. 2014. V. 40. P. 2261.
  12. Zhang Y., Cao M., Yao Z. et al. // Mater. Res. Bull. 2015. V. 67. P. 70.
  13. Lu X., Tong Y., Talebinezhad H. et al. // Proc. 2017 ISAF IWATMD PFM. (Atlanta, 2017). P. 56.
  14. Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011. 175 с.
  15. Diao C., Liu H., Hao H. et al. // Ceram. Int. 2014. V. 40. P. 2261.
  16. Al-jaafari F.M.D., Mohammed M.A., Shahad S.H. et al. // Ferroelectrics. 2023. V. 612. P. 144.
  17. Гинье А. Рентгенография кристаллов. Теория и практика. М.: ФИЗМАТЛИТ, 1961. 604 с.
  18. https://dpva.ru/Guide/GuidePhysics/Length/IonicRadius.
  19. Landolt-Börnstein. Group III Condensed Matter. V. 36A1. Berlin, Heidelberg: Springer-Verlag, 2011.
  20. Фельц А. Аморфные и стеклообразные неорганические твердые тела. М.: Мир, 1986. 556 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns obtained for samples of the Ba1– xSrxTiO3 system: with x = 0.0 (1), 0.5 (2), 1.0 (3), 2.0 (4) and 5.0 mol.% (5).

Download (188KB)
3. Fig. 2. Temperature dependences of permittivity for compositions with concentrations x = 0.0 (1), 0.5 (2), 1 (3), 2 (4) and 5 mol. % (5), obtained at a frequency of 1 kHz during heating of the samples. The inset shows the corresponding ε-1(T) dependences.

Download (221KB)
4. Fig. 3. Temperature dependences of the dielectric constant for compositions with concentrations x = 0.0 (a), 0.5 (b), 2 mol. % (c), obtained at frequencies of 25 Hz - 1 MHz during heating of the samples.

Download (644KB)
5. Fig. 4. Temperature dependences of ∆ε for barium titanate doped with silicon oxide with x = 0 (1), 0.5 (2), 1 (3), 2 (4) and 5 mol. % (5). The inset shows the dependence of lnfm on (T ‒ T0)–1.

Download (311KB)

Copyright (c) 2024 Russian Academy of Sciences