Study of magnetic interactions in a composite with a mixture of γ-Fe2O3 and CoFe2O4 nanoparticles

Capa

Citar

Texto integral

Resumo

We studied magnetic interactions in promising biomedical composites based on a piezoactive PVDF matrix with a mixture of soft magnetic γ-Fe2O3 (FO) and hard magnetic CoFe2O4 (CFO) nanoparticles by conducting IRM-DCD and FORC analyses. It was determined that the addition of a mixture of soft and hard magnetic nanoparticles to the polymer base of the composite leads to an increase in the magnetic interaction fields ΔHu from ≈1300 to ≈1500 Oe and to the formation of two main magnetic phases in the composite.

Sobre autores

V. Kolesnikova

Immanuel Kant Baltic Federal University

Email: VGKolesnikova1@kamiana.ru
Kaliningrad, Russia

V. Salnikov

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

A. Omelyanchik

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

V. Rodionova

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

Bibliografia

  1. Roseti L., Parisi V., Petretta M. et al. / Mater. Sci. Eng. C. 2017. V. 78. P. 1246.
  2. Ye G., Rao F., Zhang X. et al. // Nanomedicine. 2020. V. 15. No. 20. P. 1995.
  3. Kogyi S., Summers R., Summers M. et al. // Mater. Today Bio. 2021. V. 12. Art. No. 100149.
  4. Martins P., Lancers-Mendez S. // Adv. Funct. Mater. 2013. V. 23. No. 27. P. 3371.
  5. Амиров А.А., Кашинский А.С., Архипова Е.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 813; Amirov A.A., Kaminskiy A.S., Arkhipova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 715.
  6. Pereira L.N., Pastoril J.C.A., Dias J.S. et al. // Electron. 2024. V. 13. No. 12. P. 1.
  7. Palmedi H., Annapureddy V., Priya S., Ryu S. // Actuators. 2016. V. 5. No. 1. P. 9.
  8. Ortega N., Kumar A., Scott J.F., Katiyar R.S. // J. Phys. Cond. Matter. 2015. V. 27. No. 50. Art. No. 504002.
  9. Martins P., Kolenko Yu.V., Rivas J., Lancers-Mendez S. // ACS Appl. Mater. Interfaces. 2015. V. 7. No. 27. P. 15017.
  10. Ferson N.D., Uhl A.M., Andrew J.S. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021. V. 68. No. 2. P. 229.
  11. Lawes G., Srinivasan G. // J. Phys. D. Appl. Phys. 2011. V. 44. No. 24. Art. No. 243001.
  12. Столбов О.В., Райхер Ю.Л. // Изв. РАН. Сер. физ. 2024. Т. 88. № 4. С. 677; Stolbov O.V., Raikher Y.L. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 586.
  13. Stolbov O.V., Raikher Y.L. // Nanomaterials. 2024. V. 14. No. 1. P. 1.
  14. Зубарев А.Ю., Искакова Л.Ю. // Изв. РАН. Сер. физ. 2023. Т. 88. № 4. С. 653; Zubarev A.Y., Iskazkova L.Y. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 563.
  15. Russkikh G.S. // Procedia Eng. 2016. V. 152. P. 620.
  16. Магомедов К.Э., Омельянчик А.С., Воронцов С.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 819; Magomedov K.E., Omelyanchik A.S., Vorontsov S.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 720.
  17. Antipova V., Omelyanchik A., Sobolev K. et al. // Polymer. 2024. V. 290. Art. No. 126567.
  18. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 11. No. 5. P. 1.
  19. Pike C.R., Roberts A.P., Verosub K.L. // J. Appl. Phys. 1999. V. 85. No. 9. P. 6660.
  20. Yaganov M., Linke J., Odenbach S., Raikher Yu.L. // J. Magn. Magn. Mater. 2017. V. 431. P. 130.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025