ULTIMATE DYNAMICS OF A CANCER MODEL WITH ANGIOGENIC SWITCH AND COMBINED THERAPY
- Авторлар: Starkov K.E.1, Kanatnikov A.N.2
-
Мекемелер:
- Center for Research and Development in Digital Technologies of National Polytechnic Institute
- Bauman Moscow State Technical University
- Шығарылым: Том 61, № 10 (2025)
- Беттер: 1299-1315
- Бөлім: ORDINARY DIFFERENTIAL EQUATIONS
- URL: https://gynecology.orscience.ru/0374-0641/article/view/697339
- DOI: https://doi.org/10.7868/S3034503025100017
- ID: 697339
Дәйексөз келтіру
Аннотация
The properties of the ultimate dynamics of one 5D model of cancer tumor growth in the angiogenesis phase with additional modeling of chemotherapy and immunotherapy are considered. The ultimate upper bounds for all cell populations, as well as the lower bound for the immune cell population, are found. The conditions for global asymptotic eradication of the tumor are obtained in two situations: when only chemotherapy is used and when a combination of chemotherapy and immunotherapy is used. The study is based on the method of localization of compact invariant sets. The article also describes the boundary and internal equilibrium points and presents the results of numerical simulation illustrating the results obtained analytically.
Негізгі сөздер
Авторлар туралы
K. Starkov
Center for Research and Development in Digital Technologies of National Polytechnic Institute
Email: konstarkov@hotmail.com
Tijuana, Mexico
A. Kanatnikov
Bauman Moscow State Technical University
Email: skipper@hmsiu.ru
Moscow, Russia
Әдебиет тізімі
- Folkman, J. Angiogenesis and apoptosis / J. Folkman // Seminars in Cancer Biology. — 2003. — V. 13. — P. 159–167.
- Ramjiawan, R.R. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? / R.R. Ramjiawan, A.W. Griffioen, D.G. Duda // Angiogenesis. — 2017. — V. 20. — P. 185–204.
- Chaplain, M.A.J. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development / M.A.J. Chaplain // Math. Computer Modelling. — 1996. — V. 23. — P. 47–87.
- Anderson, A.R. Continuous and discrete mathematical models of tumor-induced angiogenesis / A.R. Anderson, M.A.J. Chaplain // Bull. Math. Biol. — 1998. — V. 60. — P. 857–899.
- Plank, M.J. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins / M.J. Plank, B.D. Sleeman, P.F. Jones// J. Theor. Biol. — 2004. — V. 229. — P. 435–454.
- Angiogenesis and vascular remodelling in normal and cancerous tissues / M.R. Owen, T. Alarco´n, P.K. Maini, H.M. Byrne // J. Math. Biol. — 2009. — V. 58. — P. 689–721.
- Nagy, J.D. Evolution of uncontrolled proliferation and the angiogenic switch in cancer / J.D. Nagy, D. Armbruster // Math. Biosci. Engin. — 2012. — V. 9. — P. 843–876.
- A cancer model for the angiogenic switch / L. Viger, D. Fabrice, R. Martin, C. Letellier // J. Theor. Biol. — 2014. — V. 360. — P. 21–33.
- Li, D. Stability of a mathematical model of tumour-induced angiogenesis / D. Li, W. Ma, S. Guo // Nonlin. Analysis: Model. Control. — 2016. — V. 21. — P. 325–344.
- Kareva, I. Escape from tumor dormancy and time to angiogenic switch as mitigated by tumor-induced stimulation of stroma / I. Kareva // J. Theor. Biol. — 2016. — V. 395. — P. 11–22.
- A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis / C. Letellier, S.K. Sasmal, C. Draghi [et al.] // Chaos, Solitons & Fractals. — 2017. — V. 99. — P. 297–311.
- Vilanova, G. A mathematical model of tumour angiogenesis: growth, regression and regrowth / G. Vilanova, I. Colominas, H. Gomez // J. Royal Society Interface. — 2017. — V. 14. — Art. 20160918.
- Zheng, X. A mathematical model of angiogenesis and tumor growth: analysis and application in anti-angiogenesis therapy / X. Zheng, M. Sweidan // J. Math. Biol. — 2018. — V. 787. — P. 1589– 1622.
- Starkov, K.E. On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies / K.E. Starkov // Phys. Lett. A. — 2018. — V. 382. — P. 387–393.
- Starkov, K.E. A cancer model for the angiogenic switch and immunotherapy: tumor eradication in analysis of ultimate dynamics / K.E. Starkov // Int. J. Bifurcat. Chaos. — 2020. — V. 30. — Art. 2050150.
- Glick, A. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors / A. Glick, A. Mastroberardino // Discr. Contin. Dynam. Systems-B. — 2020. — V. 26. — P. 5281–5304.
- The effect of tumor angiogenesis agents on tumor growth dynamics: a mathematical model / A. Mohseni, M. Pooyan, S. Raiesdana, M.B. Menhaj // Frontiers Biomed. Technol. — 2025. — V. 12. — P. 143–160.
- 3D tumor angiogenesis models: recent advances and challenges / S.M. Bhat, V.A. Badiger, S. Vasishta [et al.] // J. Cancer Res. Clinic. Oncology. — 2021. — V. 147. — P. 1–18.
- Angiogenesis and vessel co-option in a mathematical model of diffusive tumor growth: the role of chemotaxis / A. Gandolfi, S. De Franciscis, A. d’Onofrio [et al.] // J. Theor. Biol. — 2021. — V. 512. — Art. 110526.
- Kuznetsov, M. Antiangiogenic therapy efficacy can be tumor-size dependent, as mathematical modeling suggests / M. Kuznetsov, A. Kolobov // Mathematics. — 2024. — V. 12, № 2. — Art. 353.
- Rodrigues, D.S. Understanding the antiangiogenic effect of metronomic chemotherapy through a simple mathematical model / D.S. Rodrigues, P.F.A. Mancera, S.T.R. Pinho // Physica A. — 2016. — V. 464. — P. 251–266.
- d’Onofrio, A. Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999) / A. d’Onofrio, A. Gandolfi // Math. Biosci. — 2004. — V. 191. — P. 159–184.
- Pinho, S.T.R. A mathematical model of chemotherapy response to tumour growth / S.T.R. Pinho, D.S. Rodrigues, P.F.A. Mancera // Canad. Appl. Math. Quarterly. — 2011. — V. 19. — P. 369–384.
- Kirschner, D. Modeling immunotherapy of the tumor-immune interaction / D. Kirschner, J.C. Panetta // J. Math. Biol. — 1998. — V. 37. — P. 235–252.
- Крищенко, А.П. Локализация инвариантных компактов динамических систем / А.П. Крищенко // Дифференц. уравнения. — 2005. — Т. 41, № 12. — С. 1597–1604.
- Krishchenko, A.P. Localization of compact invariant sets of the Lorenz system / A.P. Krishchenko, K.E. Starkov // Phys. Lett. A. — 2006. — V. 353. — P. 383–388.
Қосымша файлдар
