Calibration of ARIMA-GARCH-Model of Basic Asset Price Based on Market Option Quotes
- Authors: Arbuzov P.A.1, Golembiovskiy D.Y.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 61, No 3 (2025)
- Pages: 104-115
- Section: Mathematical analysis of economic models
- URL: https://gynecology.orscience.ru/0424-7388/article/view/691409
- ID: 691409
Cite item
Abstract
The paper is devoted to the study of the possibility of calibrating the time series model of the underlying asset on the basis of market quotes of options on this asset. Market prices of options reflect the expectations of traders on the future dynamics of the underlying asset. At the beginning of the paper we present the general form of the ARIMA-GARCH time series model, as well as the form of the ARMA-GARCH model corresponding to the martingale risk-neutral probability measure. Next, the paper presents the formulation of the optimization problem of calibrating the risk-neutral model of logarithmic returns of the underlying asset based on the market prices of European options using the Monte Carlo method. The method of stochastic gradient approximation projection is applied to solve the problem. It is then shown how the form of the model changes when switching from a risk-neutral to a risk-averse probability measure under the assumption of the agent’s power utility function. The paper presents the results of calibrating the models on historical data on the quoted prices of the S&P500 index and the prices of European options on this index over the period from 2019 to 2023. Finally, the statistical test of Crnkovic–Drachman is performed to assess the accuracy of the calibrated models of the underlying asset returns for different future points in time.
About the authors
P. A. Arbuzov
Lomonosov Moscow State University
Email: arbuzov.parb@gmail.com
Moscow, Russia
D. Y. Golembiovskiy
Lomonosov Moscow State University
Email: dgolembiovskiy@yandex.ru
Moscow, Russia
References
- Арбузов П. А., Голембиовский Д. Ю. (2024). Калибровка распределения Su-Джонсона будущей цены базового актива на основе цен опционов // Проблемы анализа риска. Т. 21. № 2. С. 78–93. [Arbuzov P. А., Golembiovsky D. Yu. (2024). Calibration of Johnson Su-distribution of future price of underlying asset based on option prices. Issues of Risk Analysis, 21 (2), 78–93 (in Russian).]
- Глухов М. (2009). Оценка опционов методом Монте-Карло // Futures & Options World. № 4. С. 38–43. [Glukhov M. (2009). Monte-Carlo method for option pricing. Futures & Options World, 4, 38–43 (in Russian).]
- Данилишин А. Р. (2023). Приближение Гирсановской меры с логарифмической доходностью в случае тяжелохвостных распределений // Труды ИСА РАН. Т. 73. С. 21–30. [Danilishin A. R. (2023). Approximation of Girsanov’s measure with logarithmic returns in the case of heavy-tailed distributions. Proceedings of the ISA RAS, 73, 21–30 (in Russian).]
- Ермольев Ю. М. (1976). Методы стохастического программирования. М.: Наука. [Ermolyev Yu.M. (1976). Stochastic programming methods. Moscow: Nauka (in Russian).]
- Ширяев А. Н. (2004). Вероятность-2. 3е изд. М.: Изд-во Московского центра непрерывного математического образования (МЦНМО). [Shiryaev A. N. (2004). Probability-2. 3rd ed. Moscow: Publisher «Moscow Center for Continuous Mathematical Education» (MCCME) (in Russian).]
- Äıt-Sahalia Y., Lo A. W. (1998). Nonparametric estimation of state-price densities implicit in financial asset prices. Journal of Finance, 53, 499–547.
- Äit-Sahalia Y., Lo A. W. (2000). Nonparametric risk management and implied risk aversion. Journal of Econometrics, 94, 9–51.
- Bahra B. (1997). Implied risk-neutral probability density functions from option prices: Theory and application. Bank of England, Working Paper, 66. London.
- Bliss R., Panigirtzoglou N. (2004). Recovering risk aversion from options. Journal of Finance, 59, 407–446.
- Brock W. A., Dechert W. D., Scheinkman J. A., LeBaron B. (1996). A test for independence based on the correlation dimension. Econometric Reviews, 15, 197–235.
- Brockwell P. J., Davis R. A. (2002). Introduction to time series and forecasting. 2nd ed. London: Springer.
- Dowd K. (2002). Measuring market risk. Hoboken: John Wiley & Sons Ltd.
- Francq C., Zakoian J.-M. (2010). GARCH models: Structure, statistical inference, and financial applications. Hoboken: John Wiley & Sons Ltd.
- Grachev O. Y. (2017). Application of time series models (ARIMA, GARCH, and ARMA-GARCH) for stock market forecasting. Seattle: Northern Illinois Univ. Honors Capstones, 177. Available at: https://huskiecommons.lib.niu.edu/cgi/viewcontent.cgi?article=1176&context=studentengagement-honorscapstones
- Hull J. C. (2011). Options, futures and other derivative securities. 8 ed. Englewood Cliffs: Prentice Hall.
- Jackwerth J. C. (1996). Recovering risk aversion from option prices and realized return. UC Berkeley Haas School of Business Working Paper.
- Meyer D., Meyer J. (2005). Relative risk aversion: What do we know? Journal of Risk and Uncertainty, 31, 243–262.
Supplementary files
