Method of estimating direct operating costs for prospective aircraft with alternative propulsion systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

At present, in an unstable geopolitical situation, one of the most important tasks for the Russian Federation is the creation of advanced domestic aircraft that will not be inferior to its foreign counterparts. The cost of operating is the main criterion in the design of a new aircraft to ensure competitiveness in air transport systems. This article provides new regression relations between the power or thrust of a propulsion system and its cost — the level of costs for maintenance and repair of the propulsion system. These relationships make it possible to consider the costs of the propulsion system and airframe separately from each other. This approach makes it possible to obtain estimates of the cost of transportation for existing and promising aircraft, both with classic gas turbine engines and with hybrid and electric propulsion systems. The article provides a method for estimating direct operating costs for promising light aircraft based on these relationships. The calculation of operating costs and cost structure using the example of the “Eviation Alice” electric aircraft and similar functional analogs is demonstrated.

全文:

受限制的访问

作者简介

I. Uryupin

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: uryupin93@yandex.ru
俄罗斯联邦, Moscow

A. Vlasenko

Intersectoral analytical center

Email: andrey.vlasenko84@gmail.com
俄罗斯联邦, Moscow

参考

  1. Власенко А. О., Сухарев А. А., Урюпин И. В. (2023). Оценка качества функционирования авиатранспортной системы как инструмент формирования требований к перспективной авиационной технике // Управление большими системами. Вып. 104. С. 73–99. [Vlasenko A.O., Sukharev A.A., Uryupin I.V. (2023). Developing the air transportation system quality assessment tools to define the main requirements for future aircraft. Large-Scale Systems Control, 104, 73–99 (in Russian).]
  2. Иванилов Ю. П., Лотов А. В. (1979). Математические модели в экономике. Учебное пособие для вузов. М.: Наука. [Ivanilov Y. P., Lotov A. V. (1979). Mathematical models in economics. Textbook for universities. Moscow: Nauka (in Russian).]
  3. Клочков В. В., Охапкин А. А. (2021). Международное регулирование в области защиты окружающей среды от воздействия авиации и новые вызовы экономической безопасности России // Экономическая безопасность. № 4. С. 1329–1346. [Klochkov V. V., Okhapkin A. A. (2021). International regulation of environmental protection from the aviation effects and new challenges to the economic security of Russia. Economic Security, 4, 1329–1346 (in Russian).]
  4. Клочков В. В., Русанова А. Л., Максимовский В. И. (2010). Экономико-математическое моделирование процессов освоения серийного производства новых гражданских самолетов // Вестник Московского авиационного института. Т. 17. № 3. С. 235–245. [Klochkov V. V., Rusanova A. L., Maksimovskiy V. I. (2010). Economic-mathematical modeling of new civil aircraft production launching processes. Aerospace MAI Journal, 17, 3, 235– 245 (in Russian).]
  5. Кородюк И. С., Гринев Д. М. (2019). Методические особенности определения себестоимости услуг регулярных пассажирских авиаперевозчиков для различных видов коммерческой загрузки // Транспортное дело России. № 1. С. 147–150. [Korodyuk I. S., Grinyov D. M. (2019). Methodical features of determining the cost of services of regular passenger air carriers for various types of commercial load. Transport Business of Russia, 1, 147–150 (in Russian).]
  6. Манвелидзе А. Б. (2018). Расходы на эксплуатацию воздушных судов крупных американских авиаперевозчиков // Стратегические решения и риск-менеджмент. № 4 (107). С. 72–91. [Manvelidze A. B. (2018). Operating expenses for large American air carriers. Strategic Decisions and Risk Management, 4, 107, 72–91 (in Russian).]
  7. Опрышко Н. В., Опрышко Ю. В., Рубан Н. В. (2013). Динамическая модель оценки затрат на эксплуатацию пассажирского воздушного судна // Электронный журнал «Труды МАИ». № 69. Режим доступа: https://trudymai.ru/published.php? ID=43301 [Opryshko N. V., Opryshko Y. V., Ruban N. V. (2013). Dynamic model to calculate operating costs of passenger aircraft. Trudy MAI, 69. Available at: https://trudymai.ru/published.php? ID=43301 (in Russian).]
  8. Халютин С. П., Давидов А. О., Жмуров Б. В. (2017). Электрические и гибридные самолеты: перспективы создания // Электричество. № 9. С. 4–16. [Khalyutin S. P., Davidov A. O., Zhmurov B. V. (2017). Electric and hybrid aircraft development prospects. Electricity, 9, 4–16 (in Russian).]
  9. Finger D. F., Goetten F., Braun C., Cees B. (2019). Cost estimation methods for hybrid-electric general aviation aircraft. In: 2019 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2019), 265–277.
  10. Fioriti M., Vercella V., Viola N. (2018). Cost-estimating model for aircraft maintenance. Journal of Aircraft, 55, 4, 1564–1575.
  11. Fregnani J. A., Mattos B. S., Hernandes J. A. (2019). An innovative approach for integrated airline network and aircraft family optimization. In: AIAA Aviation 2019 Forum, 2865. doi: 10.2514/6.2019-2865
  12. Hoelzen J., Silberhorn D., Zill T., Bensmann B., Hanke-Rauschenbach R. (2022). Hydrogen-powered aviation and its reliance on green hydrogen infrastructure-review and research gaps. International Journal of Hydrogen Energy, 47, 5, 3108–3130.
  13. Mauler L., Duffner F., Zeier W. G., Leker J. (2021). Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy & Environmental Science, 14, 9, 4712–4739.
  14. Ribeiro J., Afonso F., Ribeiro I., Ferreira B., Policarpo H., Peças P., Lau F. (2020). Environmental assessment of hybrid-electric propulsion in conceptual aircraft design. Journal of Cleaner Production, 247, 119477.
  15. Roy S., Crossley W. A., Moore K. T., Gray J. S., Martins J. R. (2019). Monolithic approach for next-generation aircraft design considering airline operations and economics. Journal of Aircraft, 56, 4, 1565–1576.
  16. Stoll A. M., Veble Mikic G. (2016). Design studies of thin-haul commuter aircraft with distributed electric propulsion. In: 16th AIAA Aviation Technology, Integration, and Operations Conference, 3765. doi: 10.2514/6.2016-3765
  17. Washington S., Karlaftis M. G., Mannering F., Anastasopoulos P. (2020). Statistical and econometric methods for transportation data analysis. CRC press. 496 p.
  18. Woehler S., Hartmann J., Prenzel E., Kwik H. (2019). Preliminary aircraft design for a mid-range reference aircraft taking advanced technologies into account as part of the AVACON project for an entry into service in 2028. doi: 10.25967/480224. Available at: https://www.dglr.de/publikationen/2019/480224.pdf

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Costs for major repairs of turboprop engines, USD/l.h

下载 (83KB)
3. Fig. 2. Dependence of linear maintenance and repair costs on the weight of an empty equipped aircraft without a power unit, USD/l.h

下载 (103KB)
4. Fig. 3. Dependence of the cost of an aircraft without a power plant on the weight of an empty equipped aircraft without a power plant, million dollars.

下载 (99KB)
5. Fig. 4. Dependence of the cost of a gas turbine engine on its capacity, thousand dollars.

下载 (88KB)
6. Fig. 5. Estimated prices of the aircraft of the competitive group, million dollars.

下载 (144KB)
7. Fig. 6. Maintenance and repair costs for compared aircraft models, USD/l.h

下载 (173KB)
8. Fig. 7. Average costs per seat-kilometer (SKM) from distance at average fuel prices, RUB.

下载 (230KB)
9. Fig. 8. Structure of MA aircraft expenses for average prices of aviation fuel

下载 (198KB)
10. Fig. 9. Sensitivity of the level of MA aircraft expenses by cost factors (change in the level of PER with a change in the factor by 1%), %

下载 (106KB)

版权所有 © Russian Academy of Sciences, 2024