Нанокомпозит графен-фосфореновых структур с фосфидом кобальта – эффективный электрокатализатор выделения водорода в кислой среде
- Авторы: Кочергин В.К.1, Манжос Р.А.1, Кабачков Е.Н.1,2, Ходос И.И.3, Кривенко А.Г.1
-
Учреждения:
- Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
- Институт физики твердого тела имени Ю.А. Осипьяна РАН
- Институт проблем технологии микроэлектроники и особо чистых материалов РАН
- Выпуск: Том 60, № 6 (2024)
- Страницы: 399-407
- Раздел: Статьи
- URL: https://gynecology.orscience.ru/0424-8570/article/view/671316
- DOI: https://doi.org/10.31857/S0424857024060025
- EDN: https://elibrary.ru/PVETUY
- ID: 671316
Цитировать
Аннотация
Одними из наиболее перспективных электрокатализаторов реакции выделения водорода с точки зрения соотношения активности, стоимости и долговечности являются материалы, содержащие наночастицы фосфида кобальта. В работе представлен простой и эффективный подход для получения нанокомпозита графен-фосфореновых структур, декорированных наночастицами CoP с размерами 2–5 нм. Нанокомпозит был получен путем электрохимического расщепления черного фосфора с последующим сольвотермальным синтезом, осуществленным в присутствии допированных атомами азота малослойных графеновых структур в растворе, содержащем ионы Co2+. Установлено, что полученный электрокатализатор демонстрирует высокую активность и стабильность в реакции выделения водорода в кислой среде. Для достижения плотности тока 10 мА см–2 требуется перенапряжение ~220 мВ, при этом наклон Тафеля составляет ~63 мВ дек–1. Сделано предположение, что такой результат обусловлен как синергетическим эффектом взаимодействия между графеновыми и фосфореновыми структурами, так и электрокаталитической активностью наноразмерных частиц CoP, присутствующих на краевых участках фосфореновых структур.
Полный текст

Об авторах
В. К. Кочергин
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
Автор, ответственный за переписку.
Email: kochergin@icp.ac.ru
Россия, Черноголовка
Р. А. Манжос
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
Email: kochergin@icp.ac.ru
Россия, Черноголовка
Е. Н. Кабачков
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН; Институт физики твердого тела имени Ю.А. Осипьяна РАН
Email: kochergin@icp.ac.ru
Россия, Черноголовка; Черноголовка
И. И. Ходос
Институт проблем технологии микроэлектроники и особо чистых материалов РАН
Email: kochergin@icp.ac.ru
Россия, Черноголовка
А. Г. Кривенко
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
Email: kochergin@icp.ac.ru
Россия, Черноголовка
Список литературы
- Huangfu, Z., Hu, H., Xie, N., Zhu, Y.-Q., Chen, H., and Wang, Y., The Heterogeneous Influence of Economic Growth on Environmental Pollution: Evidence from Municipal Data of China, Pet. Sci., 2020, vol. 17, p. 1180. https://doi.org/10.1007/s12182-020-00459-5
- Tian, L., Li, Z., Wang, P., Zhai, X., Wang, X., and Li, T., Carbon Quantum Dots for Advanced Electrocatalysis, J. Energy Chem., 2021, vol. 55, p. 279. https://doi.org/10.1016/j.jechem.2020.06.057
- Do, M.N., Berezina, N.M., Bazanov, M.I., Gyseinov, S.S., Berezin, M.M., and Koifman, O.I., Electrochemical Behavior of a Number of Bispyridyl-Substituted Porphyrins and Their Electrocatalytic Activity in Molecular Oxygen Reduction Reaction, J. Porphyrins Phthalocyanines, 2016, vol. 20, p. 615. https://doi.org/10.1142/S1088424616500437
- Sazali, N., Emerging Technologies by Hydrogen: A Review, Int. J. Hydrogen Energy, 2020, vol. 45, p. 18753. https://doi.org/10.1016/j.ijhydene.2020.05.021
- Zou, X. and Zhang, Y., Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting, Chem. Soc. Rev., 2015, vol. 44, p. 5148. https://doi.org/10.1039/C4CS00448E
- Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis, N.S., and Schaak, R.E., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc., 2013, vol. 135, p. 9267. https://doi.org/10.1021/ja403440e
- Li, Y., Sun, Y., Qin, Y., Zhang, W., Wang, L., Luo, M., Yang, H., and Guo, S., Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials, Adv. Energy Mater., 2020, vol. 10, p. 1903120. https://doi.org/10.1002/aenm.201903120
- Ruqia, B. and Choi, S., Catalytic Surface Specificity on Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts, ChemSusChem, 2018, vol. 11, p. 2643. https://doi.org/10.1002/cssc.201800781
- Liao, F., Jiang, B., Shen, W., Chen, Y., Li, Y., Shen, Y., Yin, K., and Shao, M., Ir-Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction, ChemCatChem, 2019, vol. 11, p. 2126. https://doi.org/10.1002/cctc.201900241
- Ma, F., Xu, C., Lyu, F., Song, B., Sun, S., Li, Y.Y., Lu, J., and Zhen, L., Construction of FeP Hollow Nanoparticles Densely Encapsulated in Carbon Nanosheet Frameworks for Efficient and Durable Electrocatalytic Hydrogen Production, Adv. Sci., 2019, vol. 6, p. 1801490. https://doi.org/10.1002/advs.201801490
- Kakati, N., Maiti, J., Lee, S.H., Jee, S.H., Viswanathan, B., and Yoon, Y.S., Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt–Ru? Chem. Rev., 2014, vol. 114, p. 12397. https://doi.org/10.1021/cr400389f
- Antolini, E., Palladium in Fuel Cell Catalysis, Energy Environ. Sci., 2009, vol. 2, p. 915. https://doi.org/10.1039/b820837a
- Faber, M.S. and Jin, S., Earth-Abundant Inorganic Electrocatalysts and Their Nanostructures for Energy Conversion Applications, Energy Environ. Sci., 2014, vol. 7, p. 3519. https://doi.org/10.1039/C4EE01760A
- Zeng, M. and Li, Y., Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction, J. Mater. Chem. A, 2015, vol. 3, p. 14942. https://doi.org/10.1039/C5TA02974K
- Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., and Sun, X., Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution, Angew. Chem. Int. Ed., 2014, vol. 53, p. 6710. https://doi.org/10.1002/anie.201404161
- Yu, S.H. and Chua, D.H.C., Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 14777. https://doi.org/10.1021/acsami.8b02755
- Yan, L., Cao, L., Dai, P., Gu, X., Liu, D., Li, L., Wang, Y., and Zhao, X., Metal-Organic Frameworks Derived Nanotube of Nickel-Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting, Adv. Funct. Mater., 2017, vol. 27, p. 1703455. https://doi.org/10.1002/adfm.201703455
- Yu, D., Ilango, P.R., Han, S., Ye, M., Hu, Y., Li, L., and Peng, S., Metal-Organic Framework Derived Co@NC/CNT Hybrid as a Multifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reaction and Oxygen Reduction Reaction, Int. J. Hydrogen Energy, 2019, vol. 44, p. 32054. https://doi.org/10.1016/j.ijhydene.2019.10.149
- Lu, M., Li, L., Chen, D., Li, J., Klyui, N.I., and Han, W., MOF-Derived Nitrogen-Doped CoO@CoP Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting, Electrochim. Acta, 2020, vol. 330, p. 135210. https://doi.org/10.1016/j.electacta.2019.135210
- Sun, T., Dong, J., Huang, Y., Ran, W., Chen, J., and Xu, L., Highly Active and Stable Electrocatalyst of Ni2P Nanoparticles Supported on 3D Ordered Macro-/Mesoporous Co–N-Doped Carbon for Acidic Hydrogen Evolution Reaction, J. Mater. Chem. A, 2018, vol. 6, p. 12751. https://doi.org/10.1039/C8TA03672A
- Yang, S., Zhang, K., Ricciardulli, A.G., Zhang, P., Liao, Z., Lohe, M.R., Zschech, E., Blom, P.W.M., Pisula, W., Müllen, K., and Feng, X., A Rational Delamination Strategy towards Defect-Free, High- Mobility, Few-Layered Black Phosphorus Flakes, Angew. Chem., 2018, vol. 130, p. 4767. https://doi.org/10.1002/ange.201801265
- Cheng, J., Gao, L., Li, T., Mei, S., Wang, C., Wen, B., Huang, W., Li, C., Zheng, G., Wang, H., and Zhang, H., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science, Nano-Micro Lett., 2020, vol. 12, p. 1. https://doi.org/10.1007/s40820-020-00510-5
- Baboukani, A.R., Khakpour, I., Drozd, V., and Wang, C., Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices, Small Struct., 2021, vol. 2, p. 2000148. https://doi.org/10.1002/sstr.202000148
- Liu, H., Hu, K., Yan, D., Chen, R., Zou, Y., Liu, H., and Wang, S., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications, Adv. Mater., 2018, vol. 30, p. 1800295. https://doi.org/10.1002/adma.201800295
- Mei, J., Liao, T., and Sun, Z., Opportunities and Challenges of Black Phosphorus for Electrocatalysis and Rechargeable Batteries, Adv. Sustain. Syst., 2022, vol. 6, p. 2200301. https://doi.org/10.1002/adsu.202200301
- Gao, W., Zhou, Y., Wu, X., Shen, Q., Ye, J., and Zou, Z., State-of-the-Art Progress in Diverse Black Phosphorus-Based Structures: Basic Properties, Synthesis, Stability, Photo- and Electrocatalysis-Driven Energy Conversion, Adv. Funct. Mater., 2021, vol. 31, p. 2005197. https://doi.org/10.1002/adfm.202005197
- Konev, D.V., Kotkin, A.S., Kochergin, V.K., Manzhos, R.A., and Krivenko, A. G., Effect of graphene surface functionalization on the oxygen reduction reaction in alkaline media, Mendeleev Commun., 2020, vol. 30, p. 472. https://doi.org/10.1016/j.mencom.2020.07.021
- Yuan, Z., Li, J., Yang, M., Fang, Z., Jian, J., Yu, D., Chen, X., and Dai, L., Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer, J. Am. Chem. Soc., 2019, vol. 141, p. 4972. https://doi.org/10.1021/jacs.9b00154
- Kochergin, V.K., Komarova, N.S., Kotkin, A.S., Manzhos, R.A., Vasiliev, V.P., and Krivenko, A.G., Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction, C, 2022, vol. 8, p. 79. https://doi.org/10.3390/c8040079
- Krivenko, A.G., Manzhos, R.A., Kotkin, A.S., Kochergin, V.K., Piven, N.P., and Manzhos, A.P., Production of Few-Layer Graphene Structures in Different Modes of Electrochemical Exfoliation of Graphite by Voltage Pulses, Instrum. Sci. Technol., 2019, vol. 47, p. 535. https://doi.org/10.1080/10739149.2019.1607750
- Krivenko, A.G., Manzhos, R.A., Kochergin, V.K., Malkov, G.V., Tarasov, A.E., and Piven, N.P., Plasma electrochemical synthesis of few-layer graphene structures for modification of epoxy binder, High Energ. Chem., 2019, vol. 53, p. 254. https://doi.org/ 10.1134/S0018143919030111
- Kochergin, V.K., Manzhos, R.A., Khodos, I.I., and Krivenko, A.G., One-Step Synthesis of Nitrogen-Doped Few-Layer Graphene Structures Decorated with Mn1.5Co1.5O4 Nanoparticles for Highly Efficient Electrocatalysis of Oxygen Reduction Reaction, Mendeleev Commun., 2022, vol. 32, p. 492. https://doi.org/10.1016/j.mencom.2022.07.020
- Wang, J., Liu, D., Huang, H., Yang, N., Yu, B., Wen, M., Wang, X., Chu, P.K., and Yu, X.-F., In-Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis, Angew. Chem., 2018, vol. 130, p. 2630. https://doi.org/10.1002/ange.201710859
- Ha, D.-H., Moreau, L.M., Bealing, C.R., Zhang, H., Hennig, R.G., and Robinson, R.D., The Structural Evolution and Diffusion during the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles, J. Mater. Chem., 2011, vol. 21, p. 11498. https://doi.org/10.1039/c1jm10337g
- Liu, T., Yan, X., Xi, P., Chen, J., Qin, D., Shan, D., Devaramani, S., and Lu, X., Nickel–Cobalt Phosphide Nanowires Supported on Ni Foam as a Highly Efficient Catalyst for Electrochemical Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, 2017, vol. 42, p. 14124. https://doi.org/10.1016/j.ijhydene.2017.04.116
- Kotkin, A.S., Kochergin, V.K., Kabachkov, E.N., Shulga, Y.M., Lobach, A.S., Manzhos, R.A., and Krivenko, A.G., One-Step Plasma Electrochemical Synthesis and Oxygen Electrocatalysis of Nanocomposite of Few-Layer Graphene Structures with Cobalt Oxides, Mater. Today Energy, 2020, vol. 17, p. 100459. https://doi.org/10.1016/j.mtener.2020.100459
- Pan, Y., Liu, Y., Zhao, J., Yang, K., Liang, J., Liu, D., Hu, W., Liu, D., Liu, Y., and Liu, C., Monodispersed Nickel Phosphide Nanocrystals with Different Phases: Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution, J. Mater. Chem. A, 2015, vol. 3, p. 1656. https://doi.org/10.1039/C4TA04867A
- Huang, Z., Chen, Z., Chen, Z., Lv, C., Meng, H., and Zhang, C., Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis, ACS Nano, 2014, vol. 8, p. 8121. https://doi.org/10.1021/nn5022204
- Grosvenor, A.P., Wik, S.D., Cavell, R.G., and Mar, A., Examination of the Bonding in Binary Transition-Metal Monophosphides MP (M = Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy, Inorg. Chem., 2005, vol. 44, p. 8988. https://doi.org/10.1021/ic051004d
- Li, X., Ma, J., Luo, J., Cheng, S., Gong, H., Liu, J., Xu, C., Zhao, Z., Sun, Y., Song, W., Li, K., and Li, Z., Porous N, P Co-Doped Carbon-Coated Ultrafine Co2P Nanoparticles Derived from DNA: An Electrocatalyst for Highly Efficient Hydrogen Evolution Reaction, Electrochim. Acta, 2021, vol. 393, p. 139051. https://doi.org/10.1016/j.electacta.2021.139051
- Briggs, D. and Seah, M.P., Practical Surface Analysis: By Auger and X-Ray Photoelectron Spectroscopy, 2nd ed., JohnWiley & Sons, Ltd.: Chichester, UK, 1990. 674 p.
- Lv, X., Ren, J., Wang, Y., Liu, Y., and Yuan, Z.Y., Well-defined phase-controlled cobalt phosphide nanoparticles encapsulated in nitrogen-doped graphitized carbon shell with enhanced electrocatalytic activity for hydrogen evolution reaction at all-pH, ACS Sustain. Chem. Eng., 2019, vol. 7, p. 8993. https://doi.org/10.1021/acssuschemeng.9b01263
- Zhang, X.Y., Guo, B.Y., Chen, Q.W., Dong, B., Zhang, J.Q., Qin, J.F., Xie, J.Y., Yang, M., Wang, L., Chai, Y.M., and Liu, C.G., Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution, Int. J. Hydrogen Energy, 2019, vol. 44, p. 14908. https://doi.org/10.1016/j.ijhydene.2019.04.108
- Chen, T., Ye, B., Dai, H., Qin, S., Zhang, Y., and Yang, Q., Ni-doped CoP/Co2P nanospheres as highly efficient and stable hydrogen evolution catalysts in acidic and alkaline mediums, J. Solid State Chem., 2021, vol. 301, p. 122299. https://doi.org/10.1016/j.jssc.2021.122299
- Yang, S., Chen, L., Wei, W., Lv, X., and Xie, J., CoP nanoparticles encapsulated in three-dimensional N-doped porous carbon for efficient hydrogen evolution reaction in a broad pH range, Appl. Surf. Sci., 2019, vol. 476, p. 749. https://doi.org/10.1016/j.apsusc.2019.01.131
- Liao, L., Zhu, J., Bian, X., Zhu, L., Scanlon, M.D., Girault, H. H., and Liu, B., MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution, Adv. Funct. Mater., 2013, vol. 23, p. 5326. https://doi.org/10.1002/adfm.201300318
Дополнительные файлы
