Evolution of the Current-Voltage Characteristic of a Bipolar Memristor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A theoretical model is proposed that can describe the current-voltage characteristic of a bipolar filament memristor during reversible switching. The model allows us to describe various types of current-voltage curves observed in experiments. It has been established that the initially formed filament, after a series of switching, acquires a stationary shape that reproduces the current-voltage characteristic.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Fadeev

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: AlexVFadeev@gmail.com
Ресей, Moscow

K. Rudenko

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: rudenko@ftian.ru
Ресей, Moscow

Әдебиет тізімі

  1. Soni K. and Sahoo S. A Review on Different Memristor Modeling and Applications // 2022 International Mobile and Embedded Technology Conference (MECON), Noida, India, 2022. P. 688–695.
  2. Xiao Y., Jiang B., Zhang Z., Ke Sh., Jin Y., Wen X. A review of memristor: material and structure design, device performance, applications and prospects // Sci. and Tec. of adv. Ma t. 2023. V. 24. № 1. P. 1–24.
  3. Patil A.R., Dongale T.D., Kamat R.K., Rajpure K.Y. Binary metal oxide-based resistive switching memory devices: a status review // Materials today communications 2023. V. 34. P. 105356.
  4. Fadeev A.V., Rudenko K.V. To the Issue of the Memristor’s HRS and LRS States Degradation and Data Retention Time // Russ. Microelectron. 2022. V. 50. № 5. P. 311–325.
  5. Wu L., Liu H., Li J., Wang S., Wang X. A Multi-level Memristor Based on Al-Doped HfO2 Thin Film. // Nanoscale Res. Lett. 2019. V. 14. P. 177.
  6. Larentis S., Nardi F., Balatti S., Gilmer D.C. and Ielmini D. Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM-Part II: Modeling. // IEEE Trans. Electron Devices. 2012. V. 59. P. 2468–2475.
  7. Tang Z., Fang L., Xu N., Liu R. Forming compliance dominated memristive switching through interfacial reaction in Ti/TiO2/Au structure. // J. Appl. Phys. 2015. V. 118. P. 185309.
  8. Villena M.A., González M.B., Roldán J.B., Campabadal F., Jiménez-Molinos F., Gómez-Campos F.M., Suñé J. An in-depth study of thermal effects in reset transitions in HfO2 based RRAMs. // Solid-State Electronics. 2015. V. 111. P. 47–51.
  9. Rziga F.O., Mbarek K., Ghedira S., Besbes K. An efficient Verilog-A memristor model implementation: simulation and application. // J. Comput. Electron. 2019. V. 18. P. 1055–1064.
  10. Ji X., Dong Z., Lai C.S., Zhou G., Qi D. A physics-oriented memristor model with the coexistence of NDR effect and RS memory behavior for bio-inspired computing. // Materials Today Advances, 2022. V. 16. P. 100293.
  11. Marchewka A., Waser R. and Menzel S. Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model. // 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington DC. USA. 2015. P. 297–300.
  12. Maruf M.H. &. Ali S.I. Review and comparative study of I–V characteristics of different memristor models with sinusoidal input. // International Journal of Electronics, 2020. V. 107:3. P. 349–375.
  13. Guo T., Pan K., Jiao Y., Sun B., Du C., Mills J.P., Chen Z., Zhao X., Wei L., Zhou Y.N., Wu Y.A. Versatile Memristor for Memory and Neuromorphic Computing. // Nanoscale Horiz. 2022. V. 7. № 3. P. 299–310.
  14. Shen W., Kumar S., Kumar S. Experimentally calibrated electro-thermal modeling of temperature dynamics in memristors. // Appl. Phys. Lett. 2021. V. 118. P. 103505.
  15. Fadeev A.V., Rudenko K.V. Filament-based memristor switching model. // Microelectron. Eng. 2024. V. 289. P. 112179.
  16. Sze S.M., Ng K.K. Physics of Semiconductor Devices. // Third ed., John Wiley & Sons, New Jersey, 2007.
  17. Marchewka A., Waser R. and Menzel S. A 2D axisymmetric dynamic drift-diffusion model for numerical simulation of resistive switching phenomena in metal oxides. // 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Nuremberg. Germany. 2016. P. 145–148.
  18. Manning J.R. Diffusion kinetics for atoms in crystals. // D. Van nostrand company. inc. princeton 1968.
  19. Permiakova O.O., Rogozhin A.E., Miakonkikh A.V., Smirnova E.A., Rudenko K.V. Transition between resistive switching modes in asymmetric HfO2-based structures. // Microelectron. Eng. 2023. V. 275. 111983.
  20. Mahata C., Kang M., Kim S. Multi-Level Analog Resistive Switching Characteristics in Tri-Layer HfO2/Al2O3/HfO2 Based Memristor on ITO Electrode Nanomaterials. 2020. V. 10. P. 2069.
  21. Tang L., Maruyama H., Han T., Nino J.C., Chen Y., Zhang D. Resistive switching in atomic layer deposited HfO2/ZrO2 nanolayer stacks. // App. Surf. Sci. 2020. V. 515. P. 146015.
  22. Hao Y.X., Zhang Y., Wu Z.H.., Zhang X.M., Shi T., Wang Y.Z., Zhu J.X., Wang R., Wang Y., Liu Q. Uniform, fast, and reliable CMOS compatible resistive switching memory. // J. Semicond. 2022. V. 43. № 5. P. 054102.
  23. Jiang H., Han L., Lin P., Wang Z., Jang M.H., Wu Q., Barnell M., Yang J.J., Xin H.L., Xia Q. Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor. // Sci. Rep. 2016. V. 6. P. 28525.
  24. Otsus M., Merisalu J.; Tarre A., Peikolainen A.-L., Kozlova J., Kukli K., Tamm A.A. Bipolar Resistive Switching in Hafnium Oxide-Based Nanostructures with and without Nickel Nanoparticles. // 2022. V. 11. P. 2963.
  25. Ismail M., Mahata C., Kang M., Kim S, Robust Resistive Switching Constancy and Quantum Conductance in High-k Dielectric-Based Memristor for Neuromorphic Engineering. // Nanoscale Res. Lett. 2022. V. 17. P. 61.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. General scheme of the memristor cell adopted in the model

Жүктеу (183KB)
3. Fig. 2. Calculated volt-ampere characteristics corresponding to different radii of the initially moulded filament

Жүктеу (165KB)
4. Fig. 3. Calculated volt-ampere characteristics corresponding to different boundary voltages of RESET operation

Жүктеу (203KB)
5. Fig. 4. Calculated volt-ampere characteristics corresponding to four switching cycles

Жүктеу (199KB)

© Russian Academy of Sciences, 2024