Retrospective Dosimetry in the Southern Urals: 30 Years of Studies Within the Framework of the Project 1.1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Imperfection of radioactive waste storage technologies in the initial period of Mayak Production Association operation in 1950s led to a long-term radioactive contamination of the vast territories of the Southern and Middle Urals in Russia. In 2024, it was 30 years since the beginning of the collaborative studies of Russian and American scientists in the framework of the Project 1.1 performed under the aegis of the Joint Coordinating Committee for Radiation Effects Research. A number of science and technology tasks arise while assessing the individual exposure doses for the members of epidemiological cohorts, viz. Techa River Cohort, EURT Cohort, Cohort of the Exposed Population Offspring, and Cohort of Southern Urals Population Exposed to Radiation (SUPER cohort), the latter being established in recent years. These tasks have been accomplished owing to the collaboration. The paper describes the main tasks and methodology of dosimetric studies in the Southern Urals as well as the most prominent scientific achievements. For instance, development of the dosimetry system to calculate exposure doses for people of different sex and age based on the radionuclide measurement results in human organs and tissues. The participants of the Project 1.1 have received an invaluable experience of conducting joint scientific research. The obtained estimates of the radiogenic risk will ultimately be used in the provision of radiation safety of the population around the globe.

About the authors

E. I Tolstykh

Urals Research Center for Radiation Medicine of the FMBA of Russia

Email: evgenia.tolstykh@yandex.ru
ORCID iD: 0000-0002-4958-3214
Chelyabinsk, Russia

E. A Shishkina

Urals Research Center for Radiation Medicine of the FMBA of Russia; Chelyabinsk State University

Email: lena@urcrm.ru
ORCID iD: 0000-0003-4464-0889
Chelyabinsk, Russia; Chelyabinsk, Russia

P. A Sharagin

Urals Research Center for Radiation Medicine of the FMBA of Russia

Email: sharagin@urcrm.ru
ORCID iD: 0000-0002-1457-4916
Chelyabinsk, Russia

References

  1. Последствия техногенного радиационного воздействия и проблемы реабилитации Уральского региона. Под ред. Шойгу С.К. М.: Комтехпринт, 2002. 287 c.
  2. Posledstvija tehnogennogo radiacionnogo vozdejstvija i problemy reabilitacii Ural’skogo regiona. Ed. Shojgu S.K. Moscow: Komtehprint, 2002. 287 p. (In Russ.).
  3. Akleyev A.V., Degteva M.O. Radioecological consequences of radioactive releases due to weapons-grade plutonium production at the “Mayak” facility in the Russian Federation. J Radiol Prot. 2021; 41(2). https://doi.org/10.1088/1361-6498/abdfbb
  4. Akleyev A.V., Krestinina L.Y., Degteva M.O. et al. Consequences of the radiation accident at the Mayak production association in 1957 (the “Kyshtym Accident”). J Radiol Prot. 2017;37(3):19–42. https://doi.org/10.1088/1361-6498/aa7f8d
  5. Napier B.A. Joint U.S. / Russian studies of population exposures resulting from nuclear production activities in the southern Urals. Health Phys. 2014; 106(2):294–304. https://doi.org/10.1097/hp.0000000000000033
  6. Degteva M.O., Vorobiova M.I., Kozheurov V.P. et al. Dose reconstruction system for the exposed population living along the Techa River. Health Phys. 2000; 78:542–554. https://doi.org/10.1097/00004032-200005000-00012
  7. Degteva M.O., Kozheurov V.P., Tolstykh E.I. et al. The Techa River Dosimetry System: Methods for the reconstruction of internal dose. Health Phys. 2000; 79:24–35. https://doi.org/10.1097/00004032-200007000-00007
  8. Degteva M.O., Vorobiova M.I., Tolstykh E.I. et al. Development of an improved dose reconstruction system for the Techa River population affected by the operation of the Mayak Production Association. Radiat Res. 2006; 166:255–270. https://doi.org/10.1667/rr3438.1
  9. Degteva M.O., Napier B.A., Tolstykh E.I. et al. Enhancements in the Techa River Dosimetry System: TRDS 2016D code for reconstruction of deterministic estimates of dose from environmental exposures. Health Phys. 2019; 117(4):378–387.
  10. Shishkina E.A., Napier B.A., Preston D.L. et al. Dose estimates and their uncertainties for use in epidemiological studies of radiation-exposed populations in the Russian Southern Urals. PLoS One. 2023; 18(8): e0288479. https://doi.org/10.1371/journal.pone.0288479
  11. Degteva M.O., Shagina N.B., Vorobiova M.I. et al. Reevaluation of waterborne releases of radioactive materials from the Mayak Production Association into the Techa River in 1949–1951. Health Phys. 2012; 102(1):25–38.
  12. Дегтева М.О., Шагина Н.Б., Воробьева М.И. Современное представление о радиоактивном загрязнении реки Теча в 1949–1956 гг. Радиационная биология. Радиоэкология. 2016; 56(5):523–534.
  13. Degteva M.O., Shagina N.B., Vorobiova M.I. et al. Contemporary Understanding of radioactive contamination of the Techa River in 1949–1956. Radiats. Biol. Radioecol. 2016; 56(5):523–534. (In Russ.). http://dx.doi.org/10.7868/S0869803116050039
  14. Peremyslova L.M., Tolstykh E.I., Vorobiova M.I. et al. Analytical review of data available for the reconstruction of doses due to residence on the East Ural Radioactive Trace and the territory of windblown contamination from Lake Karachay. Final report for Milestone 10. Chelyabinsk and Salt Lake City, Urals Research Center for Radiation Medicine and University of Utah. 2004. http://biophys.urcrm.ru/publications/Milestone10.pdf. Accessed 22 July 2016
  15. Дегтева М.О., Толстых Е.И., Суслова К.Г., Романов С.А., Аклеев А.В. Анализ результатов мониторинга содержания долгоживущих радионуклидов в организме жителей уральского региона. Радиационная гигиена. 2018; 11(3):30–39.
  16. Degteva M.O., Tolstykh E.I., Suslova K.G. et al. Analysis of the results of long-lived radionuclide body burden monitoring in residents of the urals region. Radiatsionnaya Gygiena = Radiation Hygiene. 2018; 11(3):30–39. (In Russ.). https://doi.org/10.21514/1998-426X 2018-11-3-30-39
  17. Толстых Е.И., Бугров Н.Г., Кривощапов В.А. и др. Результаты прижизненных измерений содержания стронция 90 в организме жителей Уральского региона: анализ данных за 2006–2012 гг. Радиационная гигиена. 2013; 6:5–11.
  18. Tolstykh E.I., Bougrov N.G., Krivoshchapov V.A. et al. Results of in vivo measurements of strontium 90 body-burden in Urals residents: data analysis on 2006–2012. Radiation Hygiene. 2013; 6:5–11. (in Russ.).
  19. Шагина Н.Б., Голиков В.Ю., Дегтева М.О. и др. Реконструкция доз медицинского облучения для когорты реки Течи. Медицинская радиология и радиационная безопасность. 2012; 57(3):13–25.
  20. Shagina N.B., Golikov V. Yu., Degteva M.O. et al. Reconstruction of individual doses due to medical exposures for members of the Techa river cohort. Medical radiology and radiation safety. 2012; 57(3):13–25 (In Russ.).
  21. Shagina N.B., Vorobiova M.I., Degteva M.O. et al. Reconstruction of the contamination of the Techa River in 1949–1951 as a result of releases from the “MAYAK” production Association. Radiat. Environ. Biophys. 2012; 51:349–366. https://doi.org/10.1007/s00411-012-0414-0
  22. Vorobiova M.I., Degteva M.O. Simple model for the reconstruction of radionuclide concentrations and radiation exposures along the Techa River. Health Phys. 1999 Aug; 77(2):142–9. https://doi.org/10.1097/00004032-199908000-00003
  23. Vorobiova M.I., Degteva M.O., Peremyslova L.M. et al. Methodological approaches to external dose reconstruction and validation for the EURT and Karachay trace areas Final report for milestone 13 of JCCRER Project 1.1 Chelyabinsk and Salt Lake City, Urals Research Center for Radiation Medicine and University of Utah. 2006.
  24. Романов Г.Н., Шейн Г.Н., Аксенов Г.М. Дозы облучения населения на территории Восточно­Уральского радиоактивного следа: современные оценки. Вопросы радиационной безопасности. 1997; 4:52–67.
  25. Romanov G.N., Shejn G.N., Aksenov G.M. Exposure doses for the population living on East-Urals radioactive trace: current estimates. Radiat. Safety Problems (Mayak Production Association Scientific Journal). 1997; 4:52-67. (in Russ.).
  26. Авраменко М.И., Аверин А.Н., Дрожко Е.Г. и др. Авария 1957 года и Восточно-Уральский радиоактивный след. Вопросы радиационной безопасности. 1997; 3:18–28.
  27. Avramenko M.I., Averin A.N., Drozhko E.G. et al. Accident of 1957 and East Urals Radioactive Trace. Radiat. Safety Problems (Mayak Production Association Scientific Journal). 1997; 3:18–28. (In Russ.).
  28. Schwarz B.S., Bolch W.E. Re-evaluation of organ dose conversion factors for UF/ICRP reference computational phantoms resulting from external exposures at the Techa River due to ground contamination. Gainesville, FL: University of Florida; Report for Milestone 9, Part 1, 2014; 34 p.
  29. Шишкина Е.А., Волчкова А.Ю., Дёгтева М.О. Дозовые коэффициенты для конвертации воздушной кермы в значения мощности дозы в органах людей разного возраста при внешнем облучении от 137Cs в почве. Вопросы радиационной безопасности. 2018; 89(1):36–47.
  30. Shishkina E.A., Volchkova A.Yu., Degteva M.O. et al. Dose coefficients to convert air kerma into organ dose rate values for people of different ages externally exposed to 137Cs in soil. Radiat Safety Problems (Mayak Production Association Scientific Journal). 2018; 89(1):36–47. (in Russ.).
  31. Марей А.Н., Иванов В.А., Сауров И.И. и др. Изучение санитарно-гигиенической обстановки и состояния здоровья населения в районе, загрязненном жидкими радиоактивными отходами комбината № 817. Институт биофизики МЗ СССР. Технический отчет. Москва, 1961. 348 c.
  32. Marey A.N., Ivanov V.A., Saurov M.M. et al. Study of the sanitary-hygienic situation and the state of health of the population in the area contaminated with liquid radioactive waste from the facility N817. Annual report. Moscow, 1961. 348 p.
  33. Маслюк A.И. Распределение населения по времени контакта с радиоактивно загрязненным водоемом при использовании его в хозяйственно­бытовых целях. Бюллетень радиационной медицины. 1980; 3:119–122.
  34. Maslyuk A.I. Distribution of a population according to the time of contact with contaminated water reservoir during its use for house­hold needs. Bull Radiat Medicine. 1980; 3:119–122 (In Russ.).
  35. Balonov M.I., Bruk G.Y., Golikov V.Y. et al. Assessment of current exposure of the population living in the Techa River basin from radioactive releases of the Mayak facility. Health Phys. 2007; 92(2):134–147. https://doi.org/10.1097/01.hp.0000237599.92479.09
  36. Саяпина Р.Я., Гусев Д.И., Зикова А.С. Формирование коллективной дозы при различных условиях хозяйственного использования радиоактивно загрязненного водоема. Финальный отчет. Москва. 1977. 99 с.
  37. Sayapina R. Ya., Gusev D.I., Zikova A.S. et al. Formation of a collective dose under various conditions of economic use of a radioactively polluted reservoir. Final report. Moscow. 1977. 99 p. (In Russ.).
  38. Tolstykh E.I., Degteva M.O., Peremyslova L.M. et al. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: Strontium 90. Health Phys. 2011; 101(1):28–47. https://doi.org/10.1097/hp.0b013e318206d0ff
  39. Tolstykh E.I., Degteva M.O., Peremyslova L.M. et al. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs. Health Phys. 2013; 104(5):481–498. https://doi.org/10.1097/hp.0b013e318285bb7a
  40. Tolstykh E.I., Peremyslova L.M., Degteva M.O. et al. Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957–2011). Radiat Environ Biophys. 2017; 56(1):27–45. https://doi.org/10.1007/s00411-016-0677-y
  41. Degteva M.O., Kozheurov V.P., Tolstykh E.I. Retrospective dosimetry related to chronic environmental exposure. Radiat. Prot. Dosim. 1998; 79:155–160. https://doi.org/10.1093/oxfordjournals.rpd.a032381
  42. Tolstykh E.I., Kozheurov V.P., Vyushkova O.V. et al. Analysis of strontium metabolism in humans on the basis of the Techa river data. Radiat Environ Biophys. 1997; 36(1):25–9. https://doi.org/10.1007/s004110050051
  43. Толстых Е.И., Перемыслова Л.М., Шагина Н.Б. и др. Особенности накопления и выведения 90Sr у жителей Уральского региона в период 1957–1988 гг. Радиационная биология. Радиоэкология. 2005; 45(4):495–504.
  44. Tolstykh E.I., Peremyslova L.M., Shagina N.B. et al. The characteristics of 90Sr accumulation and elimination in residents of the Urals region in the period of 1957–1988. Radiat. Biol. Radioecol. 2005; 45 464–73. (In Russ.).
  45. Tolstykh E.I., Shagina N.B., Degteva M.O. et al. Cortical bone as an enduring depot of bone-seeking contaminant (90Sr): measurements in humans. Chapter II in: Trabecular and cortical bone. Morphology, biomechanics and clinical implications. 2014 by Niva Science Publichers, Inc. N.Y. P. 37–76.
  46. Tolstykh E.I., Shagina N.B., Degteva M.O. et al. Does the cortical bone resorption rate change due to 90Sr­radiation exposure? Radiat. Environ. Biophys. 2011; 50 417–430. https://doi.org/10.1007/s00411-011-0363-z
  47. Shagina N.B., Tolstykh E.I., Zalyapin V.I. et al. Evaluation of age and gender dependences of the rate of strontium elimination 25–45 years after intake: Analysis of data from residents living along the Techa River. Radiat Res. 2003; 159:239–246.
  48. Shagina N.B., Tolstykh E.I., Degteva M.O. et al. Cortical bone resorption rate in elderly persons: estimates from long-term in vivo measurements of 90Sr in the skeleton. Arch Gerontol Geriatr. 2012; 54(3):411–8. https://doi.org/10.1016/j.archger.2011.06.039
  49. Tolstykh E.I., Shagina N.B., Peremyslova L.M. et al. Transfer of bone-seeking calciumlike elements from maternal body to the infant via breast milk Breast­feeding: Methods, Benefits to the Infant and Mother, and Difficulties ed. N.G. Nueland (N.Y.: Nova Science). 2009; 83–99.
  50. Tolstykh E.I., Shagina N.B., Degteva M.O. Increase in accumulation of strontium 90 in the maternal skeleton during pregnancy and lactation: analysis of the Techa River data. Radiat Environ Biophys. 2014; 53:551–557. https://doi.org/10.1007/s00411-014-0548-3
  51. Tolstykh E.I., Degteva M.O., Kozheurov V.P. et al. Strontium transfer from maternal skeleton to the fetus estimated on the basis of the Techa river data. Radiat Prot Dosimetry. 1998; 79(1–4):307–10. https://doi.org/10.1093/oxfordjournals.rpd.a032416
  52. Shagina N.B., Tolstykh E.I., Degteva M.O. et al. Age and gender specific biokinetic model for strontium in humans. J Radiol Prot. 2015; 35(1):87–127. https://doi.org/10.1088/0952-4746/35/1/87
  53. Shagina N.B., Fell T.P., Tolstykh E.I. et al. Strontium biokinetic model for the pregnant woman and fetus: application to Techa River studies. J Radiol Prot. 2015; 35(3):659–76. https://doi.org/10.1088/0952-4746/35/3/659
  54. Shagina N.B., Tolstykh E.I., Fell T.P. et al. Strontium biokinetic model for the lactating woman and transfer to breast milk: application to Techa River studies. J Radiol Prot. 2015; 35(3):677–94. https://doi.org/10.1088/0952-4746/35/3/677
  55. Шишкина Е.А., Толстых Е.И., Дертева М.О. Индивидуализация доз внутреннего облучения для жителей прибрежных сел реки Теча: усовершенствование алгоритма расчетов. Материалы международной научной конференции “Радиобиология и экологическая безопасность — 2023” (25–26 мая, Гомель). Институт радиобиологии Национальной академии наук Беларуси. Минск: ИВЦ Минфина, 2023. 333 c.
  56. Shishkina E.A., Tolstykh E.I., Degteva M.O. Individualization of internal exposure doses for the residents of nearshore villages of the Techa River: improvement of the calculation algorithm. In proceedings of the International Scientific Conference “Radiobiology and Environmental Safety — 2023” (May 25–26, 2023, Gomel). State Scientific Institution Institute of Radiobiology The National Academy of Sciences of Belarus. Minsk: IVC of the Ministry of Finance, 2023. 333 p. (In Russ.).
  57. Degteva M.O., Shagina N.B., Tolstykh E.I. et al. An approach to reduction of uncertainties in internal doses reconstructed for the Techa River population. Radiat Prot Dosimetry. 2007; 127(1–4):480–5. https://doi.org/10.1093/rpd/ncm410
  58. Толстых Е.И., Дегтева М.О., Кривощапов В.А. Метод оценки индивидуальных значений поступления 90Sr c рационом на основе измерений зубного датчика у жителей прибрежных сел реки Течи. Вопросы радиационной безопасности. 2019; 93(4):55–63.
  59. Tolstykh E.I., Degteva M.O., Krivoschapov V.A. et al. Method for assessing individual values of 90Sr diet intake based on tooth-beta-counter measurements in residents of the Techa Riverside settlements. Radiat Safety Problems (Mayak Production Association Scientific Journal). 2019; 93(4):55–63. (In Russ.).
  60. International Commission on Radiological Protection (ICRP), Age-Dependent Doses to Members of the Public from Intakes of radionuclides, Part 2, ICRP Publication 67, Pergamon Press, 1993.
  61. International Commission on Radiological Protection (ICRP), Human Alimentary Tract Model for Radiological protection, Publication 100. Elsevier, 2007.
  62. Заляпин В.И., Тимофев Ю.С., Шишкина Е.А. Параметрическая стохастическая модель геометрии кости. Вестник ЮУрГУ. Серия: Математическое моделирование и программирование (Вестник ЮурГУ ММП). 2018; 11(2):44–57.
  63. Zalyapin V.I., Timofeev Yu.S., Shishkina E.A. A parametric stochastic model of bone geometry. Bulletin of Southern Urals State University, Issue “Mathematical Modelling. Programming & Computer Software” (SUSU MMCS). 2018; 11(2): 44–57. (In Russ.). http://dx.doi.org/10.14529/mmp180204
  64. Shishkina E.A., Zalyapin V.I., Timofeev Yu.S. et al. Parametric stochastic model of bone structures to be used in computational dosimetric phantoms of human skeleton. Radiation & Applications. 2018; 3(2):133–137. http://dx.doi.org/10.21175/RadJ.2018.02.022
  65. Shishkina E.A., Timofeev Yu.S., Volchkova A.Yu. et al. Trabecula: a random generator of computational phantoms for bone marrow dosimetry. Health Phys. 2020; 118(1):53–59. https://doi.org/10.1097/hp.0000000000001127
  66. Дегтева М.О., Шишкина Е.А., Толстых Е.И., Заляпин В.И., Шарагин П.А., Смит М.А., Напье Б.А. Методологический подход к разработке дозиметрических моделей скелета человека для бета­излучающих радионуклидов. Радиационная гигиена. 2019; 12(2):66–75.
  67. Degteva M.O., Shishkina E.A., Tolstykh E.I. et al. Methodological approach to development of dosimetric models of the human skeleton for beta-emitting radionuclides. Radiation Hygiene. 2019; 12(2):66–75. (In Russ.). https://doi.org/10.21514/1998-426X 2019-12-2-66-75
  68. Degteva M.O., Tolstykh E.I., Shishkina E.A. et al. Stochastic parametric skeletal dosimetry model for humans: General approach and application to active marrow exposure from bone-seeking beta-particle emitters. PLOS One. 2021; 16(10): e0257605. https://doi.org/10.1371/journal.pone.0257605
  69. Tolstykh E.I., Sharagin P.A., Shishkina E.A. et al. Stochastic parametric skeletal dosimetry model for humans: Anatomical-morphological basis and parameter evaluation. PLoS One. 2025; 20(7): e0327156. https://doi.org/10.1371/journal.pone.0327156
  70. Шарагин П.А., Шишкина Е.А., Толстых Е.И. Вычислительный фантом для дозиметрии красного костного мозга новорожденного ребенка от инкорпорированных бета-излучателей. Медицина экстремальных ситуаций. 2022; (4): 74–82
  71. Sharagin P.A., Shishkina E.A., Tolstykh E.I. Computational phantom for red bone marrow dosimetry from in­corporated beta emitters in a newborn baby. Extreme Medicine. 2022; 24(4):74–82. (In Russ.). http://dx.doi.org/10.47183/mes.2022.045
  72. Шарагин П.А., Шишкина Е.А., Толстых Е.И. Вычислительный фантом для дозиметрии красного костного мозга годовалого ребенка от инкорпорированных бета-излучателей. Медицина экстремальных ситуаций. 2023; (3): 45–55.
  73. Sharagin P.A., Shishkina E.A., Tolstykh E.I. Computational phantom for a one-year old child red bone marrow dosimetry due to incorporated beta emitters. Extreme Medicine. 2023; 25(3):45–54 (In Russ.). http://dx.doi.org/10.47183/mes.2023.030
  74. Шарагин П.А., Толстых Е.И., Шишкина Е.А. Вычислительный фантом для дозиметрии красного костного мозга пятилетнего ребенка от инкорпорированных бета-излучателей. Медицина экстремальных ситуаций. 2023; (4): 86–97. https://doi.org/10.47183/mes.2023.061
  75. Sharagin P.A., Shishkina E.A., Tolstykh E.I. Computational phantom for a 5-year old child red bone marrow dosimetry due to incorporated beta emitters. Extreme Medicine. 2023; 25(4):86–97 (In Russ.). http://dx.doi.org/10.47183/mes.2023.061
  76. Шарагин П.А., Толстых Е.И., Шишкина Е.А. Вычислительный фантом для дозиметрии красного костного мозга десятилетнего ребенка от инкорпорированных бета-излучателей. Медицина экстремальных ситуаций. 2024; (2):38–48.
  77. Sharagin P.A., Tolstykh E.I., Shishkina E.A. Computational phantom for the dosimetry of the red bone marrow of a 10-year-old child due to incorporated beta-emitters. Extreme Medicine. 2024; (2):35–45. http://dx.doi.org/10.47183/mes.2024.032
  78. Maynard M.R., Shagina N.B., Tolstykh E.I. et al. Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts, part 1: a Urals-based series of fetal computational phantoms. Radiat. Environ. Biophys. 2015; 54(1):37–46. https://doi.org/10.1007/s00411-014-0571-4
  79. Maynard M.R., Shagina N.B., Tolstykh E.I. et al. Fetal organ dosimetry for the Techa River and Ozyorsk Offspring Cohorts, part 2: radionuclide S values for fetal self-dose and maternal cross-dose. Radiat. Environ. Biophys. 2015;54(1):47–59. https://doi.org/10.1007/s00411-014-0570-5
  80. Shagina N.B., Degteva M.O., Tolstykh E.I. Uncertainty analysis of strontium retention in humans resulting from individual variability in metabolic parameters Harmonization of radiation, human life and the ecosystem, Proceedings of 10th international congress on radiation protection. IRPA Hiroshima CD-ROM. 2000; Paper No. P 3a 128. available in https://www.irpa.net/irpa10/cdrom/00796.pdf (10.07.2024)
  81. Napier B.A., Shagina N.B., Degteva M.O. et al. Preliminary uncertainty analysis for the doses estimated using the Techa River dosimetry system 2000. Health Phys. 2001; 81(4):395–405. https://doi.org/10.1097/00004032-200110000-00004
  82. Napier B.A., Degteva M.O., Shagina N.B. et al. Uncertainty analysis for the Techa River Dosimetry System. Medical Radiology and Radiation Safety. 2013; 58(1):5–28.
  83. Peremyslova L.M., Akleyev A.V., Kostyuchenko V.A. et al. Dietary intakes and internal exposure doses received by residents of the Karachay Trace. In: Proceedings of 11th International Congress of International Radiation Protection Association. Madrid: International Radiation Protection Association. 2004; Paper ID 325 http://irpa11.irpa.net/pdfs/7c12.pdf Accessed 22 July 2016.
  84. Eslinger P.W., Napier B.A., Anspaugh L.R. Representative doses to members of the public from atmospheric releases of (131) I at the Mayak Production Association facilities from 1948 through 1972. J Environ Radioact. 2014; 135:44–53. https://doi.org/10.1016/j.jenvrad.2014.04.003
  85. Eslinger P.W., Degteva M.O., Napier B.A. et al. Individual doses for super cohort members exposed to atmospheric radioiodine from the Mayak releases with an emphasis on prenatal doses. J Environ Radioact. 2020; 217:106219. https://doi.org/10.1016/j.jenvrad.2020.106219
  86. Napier B.A., Eslinger P.W., Tolstykh E.I. et al. Calculations of individual doses for Techa River Cohort members exposed to atmospheric radioiodine from Mayak releases. J Environ Radioact. 2017; 178–179:156–167. https://doi.org/10.1016/j.jenvrad.2017.08.013
  87. Jacob P., Göksu Y., Taranenko V. et al. On an evaluation of external dose values in the Techa River Dosimetry System (TRDS) 2000. Radiat. Environ. Biophys. 2003; 42(3):169–74. https://doi.org/10.1007/s00411-003-0212-9
  88. Degteva M.O., Bougrov N.G., Vorobiova M.I. et al. Evaluation of anthropogenic dose distribution amongst building walls at the Metlino area of the upper Techa River region. Radiat. Environ. Biophys. 2008; 47:469–479. https://doi.org/10.1007/s00411-008-0183-y
  89. Woda C., Ulanovsky A., Bougrov N.G. et al. Luminescence dosimetry in a contaminated settlement of the Techa River valley, Southern Urals, Russia. Radiat. Meas. 2011; 46(3):277–285. https://doi.org/10.1016/j.radmeas.2010.06.028
  90. Degteva M.O., Shagina N.B., Shishkina E.A. et al. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River. Radiat. Environ. Biophys. 2015; 54(4):433–44. https://doi.org/10.1007/s00411-015-0611-8
  91. Shishkina E.A., Tolstykh E.I., Verdi E. et al. Concentrations of 90Sr in the tooth tissues 60 years after intake: results of TL measurements and applications for Techa River dosimetry. Radiat. Environ. Biophys. 2014; 53:159–173. https://doi.org/10.1007/s00411-013-0501-x.
  92. Shishkina E.A., Volchkova A. Yu., Ivanov D.V. et al. Application of EPR tooth dosimetry for validation of the calculated external doses: experience in dosimetry for the Techa River cohort. Radiat. Prot. Dosimetry. 2019; 186(1):70–77. https://doi.org/10.1093/rpd/ncy258
  93. Vozilova A.V., Shagina N.B., Degteva M.O. et al. FISH analysis of translocations induced by chronic exposure to Sr radioisotopes: second set of analysis of the Techa River Cohort. Radiat. Prot. Dosimetry. 2014; 159(1–4):34–7. https://doi.org/10.1093/rpd/ncu131
  94. Shishkina E.A., Volchkova A. Yu., Timofeev Y.S. et al. External dose reconstruction in tooth enamel of Techa riverside residents. Radiat. Environ. Biophys. 2016; 55(4):477–499. https://doi.org/10.1007/s00411-016-0666-1
  95. Дегтева М.О., Шишкина Е.А., Толстых Е.И. Использование методов ЭПР И FISH для реконструкции доз у людей, облучившихся на реке Теча. Радиационная биология. Радиоэкология. 2017; 57(1):30–41.
  96. Degteva M.O., Shishkina E.A., Tolstykh E.I. et al. Application of the EPR and FISH methods to dose reconstruction for people exposed in the Techa River area. Radiats. Biol. Radioecol. 2017; 57(1):30–41. (In Russ.). https://doi.org/10.7868/S0869803117010052
  97. Petoussi N., Jacob P., Zankl M. et al. Organ doses for foetuses, babies, children and adults from envi­ron­mental gamma rays. Radiat. Prot. Dosim. 1991; 37:31–41. https://doi.org/10.1093/oxfordjournals.rpd.a081031
  98. Eckerman K.F., Ryman J.C. External exposure to radionuclides in air, water, and soil. Washington: U.S. Environmental Protection Agency; Federal guidance report No. 12, EPA 402-R 93–081; 1993.
  99. Zalyapin V.I., Krivoshchapov V.A., Degteva M.O. Numerical solution of an applied biophysics inverse problem. Inverse Prob Science Engin. 2004; 12:379–392. http://dx.doi.org/10.1080/10682760310001626777
  100. Tolstykh E.I., Shishkina E.A., Degteva M.O. et al. Age dependencies of 90Sr incorporation in dental tissues: comparative analysis and interpretation of different kinds of measurements obtained for residents on the Techa River. Health Phys. 2003; 85(4):409–19. https://doi.org/10.1097/00004032-200310000-00004
  101. Shishkina E.A., Sharagin P.A., Tolstykh E.I., et al. Uncertainty of stochastic parametric approach to bone marrow dosimetry of 89,90Sr. Heliyon. 2024; 10(4): e26275. https://doi.org/10.1016/j.heliyon.2024.e26275
  102. Woda C., Hiller M., Ulanowski A. et al. Luminescence dosimetry for evaluation of the external exposure in Metlino, upper Techa River valley, due to the shore of the Metlinsky Pond: A feasibility study. Journal of Environmental Radioactivity. 2020; 214–215:106152. https://doi.org/10.1016/j.jenvrad.2019.106152
  103. Hiller M., Woda C., Degteva M. et al. External dose reconstruction at the shore of the Metlinsky Pond in the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements and radiation transport modelling. Radiation and Environmental Biophysics. 2022; 61(1):87–109. https://doi.org/10.1007/s00411-021-00953-3
  104. Wieser A., Fattibene P., Shishkina E.A. et al. Assessment of performance parameters for EPR dosimetry with tooth enamel. Radiat. Meas. 2008; 43:731–736. https://doi.org/10.1016/j.radmeas.2008.01.032
  105. Shishkina E.A., Timofeev Yu.S., Ivanov D.V. Software for evaluation of EPR dosimetry performance. Radiat. Prot. Dosim. 2014; 159:188–193. https://doi.org/10.1007/s00411-013-0501-x
  106. Volchkova A.Yu., Shishkina E.A., Ivanov D.V. et al. Harmonization of dosimetric information obtained by different EPR methods: experience of Techa River study. Radiat. Meas. 2011; 46:801–807. https://doi.org/10.1016/j.radmeas.2011.03.036
  107. Shishkina E.A., Göksu H.Y., El-Faramawy N.A. et al. Assessment of 90Sr concentration in dental tissue using thin-layer beta-particle detectors and verification with numerical calculations. Radiat. Res. 2005; 163:462–467. https://doi.org/10.1667/rr3317
  108. Shishkina E.A. Performance parameters and uncertainty of the method for assessment of 90Sr concentration in small powder samples using α-Al2O3: C beta detectors. Radiat. Meas. 2012; 47(1):19–26. https://doi.org/10.1016/j.radmeas.2011.10.007
  109. Волчкова А.Ю., Чувакова Д.А., Шишкина Е.А. Расчет доз внутреннего облучения зубной эмали с помощью набора воксельных фантомов на примере первого нижнего резца. Вопросы радиационной безопасности. 2009; 56:66–75.
  110. Volchkova A.Yu., Chuvakova D.A., Shishkina E.A. Calculations of tooth enamel doses from internal exposure based on a set of voxel phantoms by example of the 1st low incisor. Radiat Safety Problems (Mayak Production Association Scientific Journal). 2009; 56:66–75. (In Russ.).
  111. Tolstykh E.I., Degteva M.O., Vozilova A.V. et al. Local bone-marrow exposure: how to interpret the data on stable chromosome aberrations in circulating lympho­cytes? (some comments on the use of FISH method for dose reconstruction for Techa riverside residents). Radiat. Environ. Biophys. 2017; 56(4):389–403. https://doi.org/10.1007/s00411-017-0712-7
  112. Tolstykh E.I., Vozilova A.V., Akleyev A.V. et al. Model of age-dependent dynamics and biokinetics of T-cells as natural biodosimeters. Radiat. Environ. Biophys. 2024; 63(3):405–421. https://doi.org/10.1007/s00411-024-01072-5
  113. Preston D.L., Sokolnikov M.E., Krestinina L.Y. et al. Estimates of radiation effects on cancer risks in the Mayak worker, Techa River and atomic bomb survivor studies. Radiat. Prot. Dosimetry. 2017; 173(1–3):26–31. https://doi.org/10.1093/rpd/ncw316
  114. Krestinina L.Y., Davis F.G., Schonfeld S. et al. Leukaemia incidence in the Techa River cohort: 1953–2007. Br J Cancer. 2013; 109(11):2886–93. https://doi.org/10.1038/bjc.2013.614
  115. Krestinina L.Y., Kharyuzov Y.E., Epiphanova S.B. et al. Cancer incidence after in utero exposure to ionizing radiation in Techa River residents. Radiat. Res. 2017; 188(3):314–324. https://doi.org/10.1667/rr14695.1
  116. Крестинина Л.Ю., Силкин С.С. Риск смерти от солидных злокачественных новообразований в Уральской когорте аварийно-облученного населения: 1950–2019. Радиационная гигиена. 2023; 16(1):19–31.
  117. Krestinina L. Yu., Silkin S.S. Solid cancer mortality risk in the Southern Urals populations exposed to radiation cohort: 1950–2019. Radiatsionnaya Gygiena = Radiation Hygiene. 2023; 16(1):19–31. (In Russ.). https://doi.org/10.21514/1998-426X 2023-16-1-19-31
  118. Крестинина Л.Ю., Силкин С.С. Риск онкологических заболеваний репродуктивных органов у женщин Уральской когорты аварийно-облученного населения: 1956–2019. Радиационная гигиена. 2023; 16(1):91–103.
  119. Krestinina L.Y., Silkin S.S. Cancer incidence risk of female reproductive organs in the Southern Urals populations exposed to radiation cohort: 1956–2019. Radiatsionnaya Gygiena = Radiation Hygiene. 2023; 16(1):91–103. (In Russ.). https://doi.org/10.21514/1998-426X 2023-16-1-91-103
  120. Schonfeld S.J., Krestinina L.Y., Epifanova S. et al. Solid cancer mortality in the Techa river cohort (1950–2007). Radiat. Res. 2013; 179(2):183–9. https://doi.org/10.1667/rr2932.1
  121. Schüz J., Deltour I., Krestinina L.Y. et al. In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts. Br J Cancer. 2017; 116(1):126–133. https://doi.org/10.1038/bjc.2016.373
  122. Akleyev A.V., Degteva M.O., Krestinina L.Y. Overall results and prospects of the cancer risk assessment in the Urals population affected by chronic low dose-rate exposure. Radiation Medicine and Protection. 2022; 3(4): 159–166 https://doi.org/10.1016/j.radmp.2022.08.002
  123. Krestinina L.Y., Epifanova S., Silkin S., Mikryukova L., Degteva M., Shagina N., Akleyev A. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat. Environ. Biophys. 2013; 52(1):47–57. https://doi.org/10.1007/s00411-012-0438-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences