Biological Efficacy of Pseudohypericin in Drosophila melanogaster Individuals under Normal Conditions and in Conditions Irradiation
- Авторлар: Yushkova E.A1, Punegov V.V1
-
Мекемелер:
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
- Шығарылым: Том 65, № 3 (2025)
- Беттер: 260-271
- Бөлім: General Radiobiology
- URL: https://gynecology.orscience.ru/0869-8031/article/view/697406
- DOI: https://doi.org/10.31857/S0869803125030028
- ID: 697406
Дәйексөз келтіру
Аннотация
The biological efficacy and radiodromorphine capacity of pseudohypericin isolated from St. John’s wort (Hypericum perforatum L.) were studied in the model organism Drosophila melanogaster. Effective concentrations of the substance (1 and 10 μM) were determined for each genotype. Concentrations exceeding these values had a toxic effect on animals. The highest sensitivity to the preparation was demonstrated by individuals mutant in antioxidant protection and repair. The doses of ionizing radiation at which pseudohypericin changes the radiosensitivity of individuals, decreasing or increasing its level, have been estimated. Radioprotective effects of the substance have been detected at high doses (50–100 Gy) in the wild-type Canton–Sline and doses below 50 Gy in sod-mutants. Such a combined action of agents at given drug concentrations and radiation doses can lead to increased survival and a decrease in the frequency of DNA damage in individuals. The interaction between a substance and a radiation factor is predominantly synergistic or antagonistic character depending on the radiation dose. The obtained results show that the studied parameters and mutant genotypes can be used as test-methods and test-systems for the selection of radioprotectors and their mechanisms of action, as well as the selection of optimal conditions for the use of such drugs in the field of radioprotective technologies.
Негізгі сөздер
Авторлар туралы
E. Yushkova
Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Email: ushkova@ib.komisc.ru
ORCID iD: 0000-0002-5580-2276
Syktyvkar, Russia
V. Punegov
Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Email: punegov@ib.komisc.ru
ORCID iD: 0000-0001-5493-179X
Syktyvkar, Russia
Әдебиет тізімі
- Kuruba V., Gollapalli P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J. 2018; 36(4):265–275. https://doi.org/10.3857/roj.2018.00381
- Mun G.-I., Kim S., Choi E., Kim C.S., Lee Y.-S. Pharmacology of natural radioprotectors. Arch. Pharm. Res. 2018; 41(11):1033–1050. https://doi.org/10.1007/s12272-018-1083-6
- Agostinis P., Vantieghem A., Merlevede W., de Witte P.A.M. Hypericin in cancer treatment: more light on the way. Int. J. Biochem. Cell. Biol. 2002; 34:221–241. https://doi.org/10.1016/s1357-2725(01)00126-1
- Mennini T., Gobbi M. The antidepressant mechanism of Hipericum perforatum. Life Sci. 2004; 75(9):1021–1027. https://doi.org/10.1016/j.lfs.2004.04.005
- Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hipericum perforatum L. J. Ethnopharmacol. 2010; 131:511–521. https://doi.org/10.1016/j.jep.2010.07.034
- Юшкова Е.А., Зайнуллин В.Г., Пунегов В.В., Зайнуллин Г.Г. Цитогенетические эффекты водорастворимой формы гиперицина у дефицитных по антиоксидантной защите особей Drosophila melanogaster. Известия Самарского научного центра РАН. 2013; 15(3):575–578.
- Yushkova E.A., Zainullin V.G., Punegov V.V., Zainullin G.G. Cytogenetic effects of a water-soluble form of hypericin in Drosophila melanogaster individuals deficient in antioxidant defense. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2013; 15(3):575–578. (In Russ.).
- Юшкова Е.А., Старцева О.А., Рочева Л.К. и др. Эффективность водорастворимой формы гиперицина при радиационном воздействии на Drosophila melanogaster. Известия Самарского научного центра РАН. 2014; 16(5):1785–1789.
- Yushkova E.A., Startseva O.A., Rocheva L.K. et al. Efficacy of a water-soluble form of hypericin in radiation exposure of Drosophila melanogaster. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2014; 16(5):1785–1789. (In Russ.).
- Пунегов В.В., Костромин В.И., Фомина М.Г. и др. Экстрагирование гиперицина и псевдогиперицина из зверобоя продырявленного в условиях микроволновой активации процесса. Химия растительного сырья. 2014; 1:125–130.
- Punegov V.V., Kostromin V.I., Fomina M.G. et al. Extraction of hypericin and pseudohypericin from St. John's wort under microwave activation conditions. Chemistry of plant raw materials. 2014; 1:125–130. (In Russ.) https://doi.org/10.14258/jcprm.1401125
- Punegov V.V., Kostromina V.I., Fomina M.G. et al. Microwave assisted extraction of hypericin and pseudohypericin from Hypericum perforatum. Russian Journal of Bioorganic Chemistry. 2015; 41(7):757–761. https://doi.org/10.1134/S1068162015070122
- Kooistra R., Pastink A., Zonneveld J.B., Lohman P.H., Eeken J.C. The Drosophila melanogaster DmRAD54 gene plays a crucial role in double-strand break repair after P-element excision and acts synergistically with Ku70 in the repair of X-ray damage. Mol. Cell. Biol. 1999; 19(9):6269–6275. https://doi.org/10.1128/MCB.19.9.6269
- Phillips J.P., Tainer J.A., Getzoff E.D. et al. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: Neuropathology and a model of dimer disequilibrium. Proc. Natl. Acad. Sci. 1995; 92(9):8574–8578. https://doi.org/10.1073/pnas.92.19.8574
- Sun J., Folk D., Bradley T.J., Tower J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics. 2002; 161(2):661–672. https://doi.org/10.1093/genetics/161.2.661
- Bilbao С., Ferreiro J.A., Comendador M.A., Sierra L.M. Influence of mus201 and mus308 mutations of Drosophila melanogaster on the genotoxicity of model chemicals in somatic cells in vivo measured with the Comet assay. Mutat. Res. 2002; 503(1):11–19. https://doi.org/10.1016/s0027-5107(02)00070-2
- Engels W.R., Benz W.K., Preston C.R. et al. Somatic effects of P-element activity in Drosophila melanogaster: Pupal lethality. Genetics. 1987; 117(4):745–757. https://doi.org/10.1093/genetics/117.4.745
- Moller P. Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic. Clin. Pharmocol. Toxicol. 2005; 96(1):1–42. https://doi.org/10.1111/j.1742-7843.2005.pto960101.x
- Гераськин С.А., Дикарев В.Г., Удалова А.А., Дикарева Н.С. Влияние комбинированного действия ионизирующего излучения и солей тяжелых металлов на частоту хромосомных аберраций в листовой меристеме ярового ячменя. Генетика. 1996; 32(2):279–288.
- Geras'kin S.A., Dikarev V.G., Udalova A.A., Dikareva N.S. Influentia compositionis actionis ionizing radiorum et metallorum salium gravium in frequentia aberrationum chromosomatum in folium meristem veris hordei. Genetika. 1996; 32(2): 279–288. (In Russ.).
- Лукашин Б.П., Гребенюк А.Н. Сравнительное изучение противолучевой эффективности различных доз цистамина, гепарина и нафтизина в опытах на мышах. Радиац. биол. радиоэкол. 2001; 41(3):310–312.
- Lukashin B.P., Grebenyuk A.N. Comparative study of the antiradiation efficacy of different doses of cystamine, heparin and naphthyzine in experiments on mice. Radiat. Biol. Radioecol. 2001; 41(3):310–312. (In Russ.).
- Бурлакова Е.Б. Эффект сверхмалых доз. Вестник РАН. 1994; 64(5):425–431.
- Burlakova E.B. Effect of ultra-low doses. Bulletin of the Russian Academy of Sciences. 1994; 64(5):425–431. (In Russ.).
- Asaithamby A., Chen D.J. Cellular responses to DNA double-strand breaks after low-dose g-irradiation. Nucleic Acid Res. 2009; 37(12):3912–3923. https://doi.org/10.1093/nar/gkp237
- Pollycove M., Feinendengen L.E. Molecular biology, epidemiology, and the demise of the linear no-threshold (LNT) hypothesis. Comptes Rendus Academy of Sciences Paris, Life Sciences. 1999; 322:197–204.
- Barnes J., Anderson L.A., Phillipson J.D. St. John's wort (Hypericum perforatum L.): A review of its chemistry, pharmacology, and clinical properties. J. Pharm. Pharmacol. 2001; 53:583–600. https://doi.org/10.1211/0022357011775910
- Di Carlo G., Borrelli F., Ernst E., Izzo A. St. John’s wort: Prozac from plant kingdom. Trends Pharm. Sci. 2001; 22:292–297. https://doi.org/10.1016/s0165-6147(00)01716-8
- Gadzovska-Simic S., Tusevski O., Antevski S. et al. Secondary metabolite production in Hypericium perforatum L. cell suspensions upon elicitation with fungal mycella from Aspergillus flavus. Arch. Biol. Sci., Belgrade. 2012; 64(1):113–121. https://doi.org/10.2298/ABS1201113G
- Ali S.M., Olivo M., Yuen G.Y., Chee S.K. Induction of apoptosis by hypericin through activation of caspase 3 in human carcinoma cells. Int. J. Mol. Med. 2001; 8:521–530. https://doi.org/10.3892/ijmm.8.5.521
- Vantieghem A., Xu Y., Assefa Z. et al. Phosphorylation of Bcl 2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J. Biol. Chem. 2002; 277:37718–37731. https://doi.org/10.1074/jbc.M204348200
Қосымша файлдар
