Cytogenetic Effects in a Population of Agropyron Cristatum L. from the Site Where Tests of Radioactive Substances Were Carried Out at the Semipalatinsk Nuclear Test Site

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

An assessment of cytogenetic effects in populations of wheatgrass (Agropyron cristatum L.) was carried out at 45 points of site "4A" of the Semipalatinsk test site (Kazakhstan), which did not differ in soil characteristics and heavy metal contamination, but contrasted in the level of radioactive contamination. At site "4A" in 1953–1957 combat radioactive substances were tested. The specific activity of 90Sr radionuclide in wheatgrass changed from < 1 × 102 to 9.7 × 105 Bq/kg. It was found that the frequency of aberrant cells increases linearly in the dose range from natural background to 1.4 Gy. The main contribution to the formation of cytogenetic effects in the common wheatgrass is made by double bridges, which confirms the radiation nature of the observed effects.

Sobre autores

K. Minkenova

Branch "Institute of Radiation Safety and Ecology" Republican State Enterprise "National Nuclear Centre"

Email: minkenova@nnc.kz
Kurchatov, Kazakhstan

M. Mukusheva

Republican State Enterprise "National Nuclear Centre"

Email: mukusheva@nnc.kz
Kurchatov, Kazakhstan

S. Geras'kin

NRC "Kurchatov institute" — VNIIRAE

Email: stgeraskin@gmail.com
Obninsk, Russia

Bibliografia

  1. Назарбаев Н.А. Проведение комплекса научно­технических и инженерных работ по приведению бывшего Семипалатинского испытательного полигона в безопасное состояние: монография в 3 т. / Н.А. Назарбаев, В.С. Школьник, Э.Г. Батырбеков [и др.]; Павлодар: “Дом Печати”, 2016. Т. 2. 448 с.: ил. 700 экз.  ISBN 978-9965-675-95-9.
  2. Nazarbaev N.A. Provedenie komleksa nauchno-texnicheskix I inzhenernix rabot po privedeniu bivshego Semipalatinskogo isputatel’nogo poligona v bezopasnoe sostoyanie=Scientific, technical and engineering work to ensure the safety of the former Semipalatinsk test site. Pavlodar: “Dom Pechati”. 2016. T. 2, 448 p. (In Russ.).
  3. Логачев В.А. Радиоэкологические последствия испытаний БРВ на Семипалатинском полигоне. Бюллетень по атомной энергии. 2002. № 12: 62–67.
  4. Logachev V.A. Radiojekologicheskie posledstvija ispytanij BRV na Semipalatinskom poligone. Bjulleten’ po atomnoj jenergii. 2002. № 12: 62–67. = Logachev V.A. Radioecological consequences of ballistic missile tests at the Semipalatinsk test site. Atomic Energy Bulletin. 2002; № 12: 62–67. (In Russ.).
  5. Batyrbekov E.G., Aidarhanov A.O., Vityuk V.A., Larionova N.V., Umarov M.A. Comprehensive radio­ecological survey of the Semipalatinsk test site. Kokshetau, Starkov S.A.: LTD. 2021.311 p.
  6. Larionova N.V., Lukashenko S.N., Kabdyrakova A.M. et al. Transfer of radionuclides to plants of natural ecosystems at the Semipalatinsk Test Site. Journal of Environmental Radioactivity. 2018; V. 186: 63–70.
  7. Осинцев А.Ю., Нефедов Р.А. О характере поверхностного загрязнения искусственными радионуклидами испытательной площадке 4 и “4А” расположенных в пределах Семипалатинского испытательного полигона. Биологические науки. 2015; 1: 121–122.
  8. Osincev A. Ju., Nefedov R.A. O haraktere poverhnostnogo zagrjaznenija iskusstvennymi radionuklidami ispytatel’noj ploshhadke 4 i “4A” raspolozhennyh v predelah Semipalatinskogo ispytatel’nogo poligona. Biologicheskie nauki. 2015; 1: 121–122. = Osintsev A. Yu., Nefedov R.A. On the nature of surface contamination by artificial radionuclides at test site 4 and “4A” located within the Semipalatinsk test site. Biological Sciences. 2015; 1:121–122 (In Russ.).
  9. Кундузбаева А.Е., Осинцев А.Ю., Лукашенко С.Н. и др. Формы нахождения искусственных радионуклидов в почвах испытательной площадки боевых радиоактивных веществ. Актуальные вопросы радиоэкологии Казахстана. Павлодар: Дом печати, 2013. C. 167–179.
  10. Kunduzbaeva A.E., Osincev A.Yu., Lukashenko S.N. i dr. Formy nahozhdenija iskusstvennyh radionuklidov v pochvah ispytatel’noj ploshhadki boevyh radioaktivnyh veshhestv. Aktual’nye voprosy radiojekologii Kazahstana. Pavlodar: Dom pechati, 2013. P. 167–179. = Kunduzbaeva A.E., Osintsev A.Yu., Lukashenko S.N. et al. Forms of presence of artificial radionuclides in the soils of the testing site for radioactive military substances. Current issues of radioecology in Kazakhstan. Pavlodar: House of Printing, 2013. P. 167–179. (In Russ.).
  11. Цвелев Н.Н. Злаки СССР. Ленинград: Наука, 1976. 788 с.
  12. Cvelev N.N. Zlaki SSSR. Leningrad: Nauka, 1976. 788 s. = Tsvelev N.N. Cereals of the USSR: monograph. Leningrad. 1976. 799 p. (In Russ.).
  13. МИ 5.06.001.98 РК “Активность радионуклидов в объемных образцах. Методика выполнения измерений на гамма-спектрометре: МИ 2143-91. 18 с.
  14. MI 5.06.001.98 RK “Aktivnost’ radionuklidov v obemnyh obrazcah. Metodika vypolnenija izmerenij na gamma-spektrometre: MI 2143–91. 18 s. = = MI 5.06.001.98 RK “Activity of radionuclides in bulk samples. Methodology for performing measurements on a gamma spectrometer: MI 2143–91. 18 p. (In Russ.).
  15. Методика измерения активности радионуклидов с использованием сцинтилляционного бета­спектрометра с программным обеспечением “Прогресс”. Менделеево. 20 с.
  16. Metodika izmerenija aktivnosti radionuklidov s ispol’zovaniem scintilljacionnogo beta-spektrometra s programmnym obespecheniem “Progress”. Mendeleevo. 20 s. = Methodology for measuring the activity of radionuclides using a scintillation beta spectrometer with Progress software. Mendeleevo. 20 p. (In Russ.).
  17. Подготовка проб для элементного анализа методом автоклавного разложения. Рабочая инструкция: РИ 03-02-03 (А). Курчатов: ИРБЭ НЯЦ РК, 2014. 12 с.
  18. Podgotovka prob dlja jelementnogo analiza metodom avtoklavnogo razlozhenija. Rabochaja instrukcija: RI 03-02-03 (A). Kurchatov: IRBJe NJaC RK, 2014. 12 s. = Preparation of samples for elemental analysis by autoclave decomposition. Working instructions: RI 03-02-03 (A). Kurchatov: IRBE NNC RK, 2014. 12 p. (In Russ.).
  19. Isotopic Compositions of the Elements, Pure Appl., Chem. 1989; Vol. 63 (7).
  20. Environmental Protection: the Concept and Use of Reference Animals and Plants. ICRP Publication. 2008. Vol. 108. 242 p.
  21. Ларионова Н.В. Накопление искусственных радионуклидов растениями на территории бывшего Семипалатинского испытательного полигона: Автореф. дис…канд. биол. наук: Обнинск, 2013.
  22. Larionova N.V. Nakoplenie iskusstvennyh radionuklidov rastenijami na territorii byvshego Semipalatinskogo ispytatel’nogo poligona: Avtoref. dis…kand. biol. nauk: Obninsk, 2013. = Larionova N.V. Accumulation of artificial radionuclides by plants on the territory of the former Semipalatinsk test site: Author’s abstract. dis … cand. biol. Sciences: Obninsk, 2013 (In Russ.).
  23. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments / Technical Reports Series No. 472. — Vienna: IAEA, 2010.
  24. Паушева З.В. Практикум по цитологии растений. М.: Колос, 1980. 225 с.
  25. Pausheva Z.V. Praktikum po citologii rastenij. M.: Kolos, 1980. 225 s. = Pausheva Z.V. Workshop on plant cytology. M.: Kolos, 1980. 225 p. (In Russ.).
  26. Лакин Г.Ф. Биометрия. М.: Высш. шк., 1990. 352 с.
  27. Lakin G.F. Biometrija. M.: Vyssh. shk., 1990. 352 s. = = Lakin G.F. Biometrics. M.: Higher. school, 1990. 352 p.]
  28. Geras’kin S.А., Minkenova К., Perevolotsky A. Threshold dose rates for the cytogenetic effects in crested hairgrass populations from the Semipalatinsk nuclear test site, Kazakhstan. Journal of Hazardous Materials. 2021. Vol. 416, № 125817. P. 1–9.  References: p. 8–9.
  29. Гераськин С.А., Минкенова К.С., Переволоцкая Т.В., Переволоцкий А.Н. Цитогенетические эффекты в популяциях ковыля волосовидного с территории Семипалатинского испытательного полигона. Радиационная биология. Радиоэкология. 2022. Т. 62. № 6. С. 642–658.
  30. Geras’kin S.A., Minkenova K.S., Perevolockaja T.V., Perevolockij A.N. Citogeneticheskie jeffekty v populjacijah kovylja volosovidnogo s territorii Semipalatinskogo ispytatel’nogo poligona. Radiacionnaja biologija. Radio­jekologija. 2022. T. 62. № 6. S. 642–658. = Geras’kin S.A., Minkenova K.S., Perevolotskaya T.V., Perevolotsky A.N. Cytogenetic effects in feather grass populations from the territory of the Semipalatinsk test site. Radiation biology. Radioecology. 2022. T. 62. No. 6. P. 642–658. (In Russ.).
  31. Добровольский В.С. Основы биогеохимии. М.: Академия, 2003. 400 с.
  32. Dobrovol’skij V.S. Osnovy biogeohimii. M.: Akademija, 2003. 400 s.= Dobrovolsky V.S. Fundamentals of biogeochemistry. M.: Academy, 2003. 400 p. (In Russ.).
  33. Andersson P., Garnier-Laplace J., Beresford N.A., Copplestone D., Howard B.J., Howe P.D., Oughton D., Whitehouse P. Protection of the environment from ionizing radiation in a regulatory context (protect): proposed numerical benchmark values. J. Environ­mental Radioactivity. 2009. V. 100. P. 1100–1108.
  34. Streffer C.H., Bolt D., Follesdal et al. Low dose exposures in the environment. Dose-effect relations and risk evaluation. Berlin, Heidelberg: Springer-Verlag, 2004. 471 p.
  35. Geras’kin S., Evseeva T., Oudalova A. Plants as a tool for the environmental health assessment. Encyclopedia of Environmental Health. Second edition. Elsevier, 2019. V. 5. P. 239–248.
  36. Mothersill C., Seymour C. Low dose radiation mechanisms: The certainty of uncertainty. Mutation Research. 2022. V. 876–877.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025