The Effect of Gamma Radiation on the Mitotic Index and Root Growth Endpoints of Allium Cepa Seedlings in Long-Term Experiments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of γ-radiation including low doses on the mitotic index and root growth endpoints of Allium cepa (L.) seedlings in different intervals of the recovery time after irradiation were studied. Onion seedlings were irradiated with 137Cs point γ-sources of various activity, including radioactive microparticles of the Yenisei River floodplain. According to the results of 7 experiments, the inhibitory effect of γ-irradiation on onion root growth was observed in the dose range from 0.1 to 21 Gy in the time interval of the recovery period of up to 6 days, by the 10th day the damaging effect of γ-irradiation persisted mainly at absorbed doses of 5.2 Gy. A detailed examination of root growth inhibition in the time interval from 1 to 6 days of the experiment allowed us to determine that a sharp inhibition of root growth began on day 4 at absorbed doses of 2.5–10.7 Gy, and at the same time a decrease in proliferative activity in the apical meristem of the root was observed. The results of a factor analysis of the experiment on the dynamics of inhibition of primary root length and mitotic index after irradiation are presented.

About the authors

E. A Trofimova

Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS"

Email: e.trofimova11@yandex.ru
ORCID iD: 0000-0001-7511-4916
junior researcher, radioecology laboratory, Krasnoyarsk, Russia

A. Ya Bolsunovsky

Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS"

Email: radecol@ibp.ru
ResearcherId: P‑8028-2015
Dr. Sc. (Biology), head of radioecology laboratory Krasnoyarsk, Russia

D. V Dementyev

Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS"

Email: dementyev@gmail.com
ORCID iD: 0000-0002-7016-8592
senior researcher radioecology laboratory Krasnoyarsk, Russia

M. V Petrichenkov

Budker Institute of Nuclear Physics of the Siberian Branch of the RAS

Email: petrmv@gmail.com
ORCID iD: 0000-0002-4125-3798
is the head of the department for Radiation Research and Radiation Safety Novosibirsk, Russia

References

  1. Duarte G.T., Volkova P. Yu., Perez F.F., Horemans N. Chronic ionizing radiation of plants: an evolutionary factor from direct damage to non-target effects // Plants. 2023; 12(5):1178. https://doi.org/10.3390/plants12051178
  2. Gudkov S.V., Grinberg M.A., Sukhov V., Vodeneev V. Effect of ionizing radiation on physiological and molecular processes in plants. // J. Environ. Radioact. 2019; (202):8–24. https://doi.org/10.1016/j.jenvrad.2019.02.001
  3. Jan S., Parween T., Siddiqi T.O., Mahmooduzzafar. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products // Environ. Rev. 2012; 20(1):17–39. https://doi.org/10.1139/a11-021
  4. Mishra S., Duarte G.T., Horemans N., Ruytinx J., Gudkov D., Danchenko M. Complexity of responses to ionizing radiation in plants, and the impact on interacting biotic factors // Sci Total Environ. 2024; (924):171567. https://doi.org/10.1016/j.scitotenv.2024.171567
  5. UNSCEAR2000. Sources and Effects of Ionizing Radiation. United Nations. Report to the General Assembly, with Scientific Annexes. Volume II: Effects. Annex G. Biological effects at low radiation doses. New York: United Nations, 2000; 75–161.
  6. ICRP, 2009. Environmental protection: the Concept and use of reference animals and plants. Int. Comm. Radiol. Protect. (ICRP) Publ. 108 242. Approved by the Commission in October 2008. Published by Elsevier Ltd. 2009.
  7. Bolsunovsky A.Y., Dementyev D.V., Trofimova E.A. et al. Chromosomal aberrations and micronuclei induced in onion (Allium cepa) by gamma-radiation // J. Environ. Radioact. 2019; (207):1–6. https://doi.org/10.1016/j.jenvrad.2019.05.014
  8. George J.T., Patel B.B., Rane V.A. et al. Non-linear dose response of a few plant taxa to acute gamma radiation // Cytologia. 2014; 79(1):103–109. https://doi.org/10.1508/cytologia.79.103
  9. Geras’kin S.A, Oudalova A.A, Kim J.K, Dikarev V.G, Dikareva N.S. Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship // Radiat. Environ. Biophys. 2007; 46(1):31–41. http://doi.org/10.1007/s00411-006-0082-z
  10. Geras’kin S, Churyukin R, Volkova P. Radiation exposure of barley seeds can modify the early stages of plants’ development // J. Environ. Radioact. 2017; (177):71–83. http://dx.doi.org/10.1016/j.jenvrad.2017.06.008
  11. Zaichkina S.I., Rozanova O.M., Aptikaeva G.F. et al. Low doses of gamma-radiation induce nonlinear dose responses in mammalian and plant cells // Nonlinear Biol. Toxicol. Med. 2004; 2(3):213–221. https://doi.org/10.1080/15401420490519861
  12. Zaka R., Chenal C., Misset M.T. Study of external low irradiation dose effects on induction of chromosome aberrations in Pisum sativum root tip meristem // Mutat. Res. / Genet. Toxicol. Environ. Mutagen. 2002; 517(1–2):87–99. https://doi.org/10.1016/S1383-5718(02)00056-6
  13. Bonciu E., Firbas P., Fontanetti C.S. et al. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay // Caryologia. 2018; 71(3):191–209. https://doi.org/10.1080/00087114.2018.1503496
  14. Leme D.M., Marin-Morales M.A. Allium cepa test in environmental monitoring: A review on its application // Mutat. Res. 2009; 682(1):71–81. https://doi.org/10.1016/j.mrrev.2009.06.002
  15. Болсуновский А.Я., Трофимова Е.А., Зуева А.В., Дементьев Д.В. Первые данные по использованию Allium-теста для оценки химической и радиационной токсичности донных отложений реки Енисей // Доклады академии наук. 2016; 469(4):1–4.
  16. Bolsunovsky A. Ya., Trofimova E.A., Zueva A.V., Dementiev D.V. The first results of using the Allium test in estimating the chemical and radiation toxicity of bottom sediments in the Yenisei River // Dokl. Biol. Sci. 2016; 469:192–195. https://doi.org/10.7868/S0869565216220308
  17. Пяткова С.В., Гераськин С.А., Васильева А.Н., Козьмин Г.В., Лянной Н.Н. Особенности использования Аllium-теста для оценки токсичности образцов воды и почвы с радиоактивно загрязненных территорий // Изв. вузов. Ядерная энергетика. 2009; (3):50–57.
  18. Pjatkova S.V., Geras'kin S.A., Vasil'eva A.N., Koz'min G.V., Ljannoj N.N. Osobennosti ispol'zovanija Allium-testa dlja ocenki toksichnosti obrazcov vody i pochvy s radioaktivno zagrjaznennyh territorij // Izv. vuzov. Jadernaja jenergetika. 2009; (3):50–57 (In Russ.).
  19. Синовец С.Ю., Пяткова С.В., Козьмин Г.В. Экспериментальное обоснование использования Аллиум-теста в радиоэкологическом мониторинге // Изв. вузов. Ядерная энергетика. 2009; (1):32–38.
  20. Sinovec S. Ju., Pjatkova S.V., Koz’min G.V. Jeksperimental’noe obosnovanie ispol’zovanija Allium-testa v radiojekologicheskom monitoringe // Izv. vuzov. Jadernaja jenergetika. 2009; (1):32–38. (In Rus.)]
  21. Столбова В.В., Щеглов А.И., Агапкина Г.И., Манахов Д.В., Цветнова О.Б. Формы токсичности почв территорий с высокой степенью долговременного радионуклидного загрязнения, выявляемые твердофазным биотестом с Allium cepa // Вестник Московского университета. Серия 17. Почвоведение. 2024; 79(3):170–178.
  22. Stolbova V.V., Shcheglov A.I., Agapkina G.I., Manakov D.V, Tsvetnova O.B. Forms of soil toxicity in areas with a high degree of long-term radionuclide contamination identified by a solid-phase biotest with Allium cepa // Moscow University Soil Science Bulletin. 2024; 79(3):170–178 (In Russ.). https://doi.org/10.3103/S0147687424700285367-376
  23. Удалова А.А., Пяткова С.В., Гераськин С.А., Киселев С.М., Ахромеев С.В. Оценка цито- и генотоксичности подземных вод, отобранных на промплощадке Дальневосточного центра по обращению с радиоактивными отходами // Радиационная биология. Радиоэкология. 2016; 56(2):208–219.
  24. Oudalova A.A, Pyatkova S.V., Geras’kin S.A., Kiselev S.M., Akhromeev S.V. Assessment of cyto- and genotoxicity of underground waters from the Far Eastern center on radioactive waste treatment site // Radiat. biol. Radioecol. 2016;59(3):293–299 (In Russ.). https://doi.org/10.55959/MSU0137-0944-17-2024-79-3-170-179
  25. Evseeva T.I., Geras’kin S.A., Shuktomova I.I. Genotoxicity and toxicity assay of water sampled from a radium production industry storage cell territory by means of Allium-test // J. Environ. Radioact. 2003; (68):235–248. https://doi.org/10.1016/S0265-931X(03)00054-7
  26. Kovalchuk O., Kovalchuk I., Arkhipov A. et al. The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident // Mutat. Res. / Genet. Toxicol. Environ. Mutagen. 1998; (415):47–57. https://doi.org/10.1016/S1383-5718(98)00053-9
  27. Зуева А.В., Трофимова Е А., Дементьев Д.В., Болсуновский А.Я. Действие γ-излучения в малых дозах на цитогенетические параметры проростков семян лука Allium cepa в экспериментах разной длительности // Радиац. биология. Радиоэкология. 2021; 61(2):180–188.
  28. Zueva A.V., Trofimova E.A., Dementyev D.V., Bolsunovsky A. Ya. The effect of low-dose γ-radiation on cytogenetic endpoints of onion (Allium cepa) seedlings in experiments of various durations // Radiat. biol. Radioecol. 2021; 61(2):180–188. (In Russ.). https://doi.org/10.31857/S0869803121020156
  29. Чередниченко О.Г., Нуралиев С.К., Пилюгина А.Л., Азизбекова Д.Э. Сравнительный анализ эффективности использования растительной тест­системы Allium cepa для оценки радиационного воздействия // Experimental Biology. 2024; (1):98–109.
  30. Cherednichenko O.G., Nuraliev S.К., Pilyugina A.L., Azizbekova D.E. Comparative analysis of the effectiveness of Allium cepa plant test system for the detection of cytogenetic disorders in radiation exposure // Experimental Biology. 2024; (1):98–109 (In Russ.). https://doi.org/10.26577/eb.2024.v98.i1.09
  31. Butini T., Barco F., Cascone M.G., Ciolini R., Quattrocchi M., Rosellini E., Torres Novaes J.A., Xavier M.N., de Souza Lalic S., d’Errico F. Biodosimetry of ionizing radiations at different LET levels through cytogenetic endpoints in Allium cepa meristems // Radiat. Meas. 2024; 176:107223. https://doi.org/10.1016/j.radmeas.2024.107223
  32. Xavier M.N., Pantaleão S.M., Scher R., R. Ciolini R., d’Errico F., Souza S.O. Allium cepa used as a dosimetry system in nuclear and radiological emergencies // Eur. Phys. J. Plus. 2021; 136:682. https://doi.org/10.1140/epjp/s13360-021-01674-8
  33. Vaijapurkar S.G., Agarwal D., Chaudhuri S.K., Senwar K.R., Bhatnagar P.K. Gamma-irradiated onions as a biological indicator of radiation dose. // Radiat. Meas. 2001; 33(5):833–836. https://doi.org/10.1016/S1350-4487(01)00246-3
  34. Филиппов Э.В., Филиппова Г.В. Особенности действия γ-излучения на семена лука ветвистого (Allium odorum L.) // Радиац. биология. Радиоэкология. 2019; 59(5):538–545.
  35. Filippov E.V., Filippova G.V. Peculiar Properties of the effect of γ-radiation on seeds of Allium odorum L. // Radiat. Biol. Radioecol. 2019; 59(5):538–545. (In Russ.). https://doi.org/10.1134/S0869803119050059
  36. Amjad M., Anjum M.A. Effect of gamma radiation on onion seed viability, germination potential, seedling growth and morphology // Pak. J. Agric. Sci. 2002; 39(3):202–206.
  37. Amjad M., Anjum M.A. Effect of post-irradiation storage on the radiation-induced damage in onion seeds // Asian Journal of Plant Sciences. 2003; 2(9):702–707. https://doi.org/10.3923/ajps.2003.702.707
  38. Amjad M., Anjum M.A. Effect of post-irradiation ageing on onion seeds // Acta Physiol. Plant. 2007; 29(1):63–69. https://doi.org/10.1007/s11738-006-0010-5
  39. Болсуновский А.Я., Трофимова Е.А., Зуева А.В., Дементьев Д.В., Петриченков М.В. Влияние гамма-излучения на цитогенетические и ростовые параметры проростков Allium cepa в длительных экспериментах // Доклады Российской академии наук. Науки о жизни. 2022; 503(1):183–188.
  40. Bolsunovsky A.Y., Trofimova E.A., Zueva A.V. Effect of gamma radiation on cytogenetic and growth endpoints of Allium cepa seedlings in long-term experiments // Dokl. Biochem. Biophys. 2022; 53:85–89. https://doi.org/10.31857/S2686738922020044
  41. Трофимова Е.А., Дементьев Д.В., Болсуновский А.Я. Влияние γ-излучения на развитие растений из облученных семян и проростков Allium cepa L. // Радиац. биология. Радиоэкология. 2019;59(3):293–299.
  42. Trofimova E.A., Dementyev D.V., Bolsunovsky A. Ya. The effect of γ-rays on the development of plants from irradiated seeds and seedlings of Allium cepa L. // Radiat. biol. Radioecol. 2019; 59(3):293–299. (In Russ.). https://doi.org/10.1134/S0869803119030111
  43. Кравец Е.А., Михеев А.Н., Овсянникова Л.Г., Гродзинский Д.М. Критический уровень радиационного повреждения апикальной меристемы корня и механизмы ее восстановления у Pisum sativum L. // Цитология и генетика. 2011; 45(1):24–34.
  44. Kravets E.A., Mikheev A.N., Ovsyannikova L.G., Grodzinsky D.M. Critical level of radiation damage of root apical meristem and mechanisms for its recovery in Pisum sativum L. // Cytol Genet. 2011; 45(1):24–34. (In Russ.).
  45. Алдибекова А.Е, Стяжкина Е.В., Тряпицына Г.А, Пряхин Е.А. Сравнение цитогенетических эффектов импульсного магнитного поля и гамма­излучения при воздействии на клетки меристемы проростков лука (Allium cepa L.) // Известия РАН. Серия биологическая. 2024; (1):3–13.
  46. Aldibekova A.E., Styazhkina E.V., Tryapitsyna G.A., Pryakhin E.A. Comparison of the cytogenetic effects of a pulsed magnetic field and gamma radiation on meristem cells of onion seed sprouts (Allium ce­pa L.) // Biology Bulletin. 2024; 51(1):1–10 (In Russ.). https://doi.org/10.31857/S1026347024010012
  47. ГОСТ 12038-84. Семена сельскохозяйственных культур. Методы определения всхожести. Межгосударственный стандарт. Стандарты на методы контроля. М., 2002. 28 с.
  48. GOST 12038-84. Semena sel’skohozjajstvennyh kul’tur. Metody opredelenija vshozhesti. Mezhgosudarstvennyj standart. Standarty na metody kontrolja. M., 2002. 28 p. (In Russ.).
  49. Abu-Absi N.R., Srienc F. Instantaneous evaluation of mammalian cell culture growth rates through analysis of the mitotic index // J. Biotechnol. 2002; 95(1) 63–84. https://doi.org/10.1016/s0168-1656(01)00444-8
  50. Cooper S. Distinguishing between linear and exponential cell growth during the division cycle: single-cell studies, cell-culture studies, and the object of cell-cycle research. // Theor Biol Med Model. 2006; 3(1):10. https://doi.org/10.1186/1742-4682-3-10
  51. Matagne R. Chromosomal aberrations induced by dialkylating agents in Allium cepa root-tips and their relation to the mitotic cycle and DNA synthesis // Radiat. Botany. 1968; 8(6):489–497. https://doi.org/10.1016/S0033-7560(68)80111-5
  52. Ivanov V.B., Bystrova E.I. The effect of radiation and various metabolic inhibitors on the cell life span in the root meristem. // Doklady Biological Sciences. 2006; 407(1):198–200. https://doi.org/10.1134/S0012496606020244
  53. Clowes F.A.L. The duration of the G1 phase of the mitotic cycle and its relation to radiosensitivity // New Phytologist. 1965; 64(3)355–359. https://doi.org/10.1111/j.1469-8137.1965.tb07544.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences