Non-semisimple degeneracy of Lamb waves

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Anomalous guided waves appearing at a non-semisimple degeneracy of the fundamental matrix are observed and analysed in the framework of the Cauchy sextic formalism. The non-semisimple degeneracy condition is explicitly constructed for the most general case of Lamb waves propagating in a traction-free layer with arbitrary elastic anisotropy. A new type of dispersion equation and the corresponding dispersion solution are obtained. The connection with surface waves of the non-Rayleigh type is discussed.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Karakozova

Moscow State University of Civil Engineering

Email: kuzn-sergey@yandex.ru
Ресей, Moscow

S. Kuznetsov

Ishlinski Institute for Problems in Mechanics

Хат алмасуға жауапты Автор.
Email: kuzn-sergey@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Barnett D.M., Lothe J. Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals // J. Phys. F: Metal Phys. 1974. V. 4. P. 671–686. https://doi.org/10.1088/0305-4608/4/5/009
  2. Chadwick P., Smith G.D. Foundations of the theory of surface waves in anisotropic elastic materials // Adv. Appl. Mech. 1977. V. 17. P. 303–376. https://doi.org/10.1016/s0065-2156(08)70223-0
  3. Ting T.C.T., Barnett D.M. Classification of surface waves in anisotropic elastic materials // Wave Motion, 1997. V. 26. P. 207–218. https://doi.org/10.1016/S0165-2125(97)00027-9
  4. Ting T.C.T. On extraordinary semisimple matrix N(v) for anisotropic elastic materials // Quart. Appl. Math. 1997. V. 55. P. 723–738.
  5. Wang Y.M., Ting T.C.T. The Stroh formalism for anisotropic materials that possess an almost extraordinary degenerate matrix N // Int. J. Solids Struct. 1997. V. 34. P. 401–413. https://doi.org/10.1016/S0020-7683(96)00024-8
  6. Clements D.L. A note on surface waves in anisotropic media // Acta Mech. 1985. V. 56. P. 31–40. https://doi.org/10.1007/BF01306022
  7. Kuznetsov S.V. “Forbidden” planes for Rayleigh waves // Quart. Appl. Math. 2002. V. 60. P. 87–97. https://doi.org/10.1090/qam/1878260
  8. Kuznetsov S.V. Surface waves of non-Rayleigh type // Quart. Appl. Math. 2003. V. 61. P. 575–582. https://doi.org/10.1090/qam/1999838
  9. Royer D., Dieulesaint E. Elastic Waves in Solids 1. Free and Guided Propagation, NY: Springer, 1996. 370 p.
  10. Musgrave M.J.P. On the propagation of elastic waves in aeolotropic media. I. General principles // Proc. R. Soc. Lond. A. 1954. V. 226. P. 339–355. https://doi.org/10.1098/rspa.1954.0258
  11. Buchwald V.T. Rayleigh waves in transversely isotropic media // Quart. J. Mech. Appl. Math. 1954. V. 14. P. 293–317. https://doi.org/10.1093/qjmam/14.3.293
  12. Synge J.L. Elastic waves in anisotropic media // J. Math. Phys. 1956. V. 35. P. 323–334. https://doi.org/10.1002/SAPM1956351323
  13. Lim T.C., Farnell G.W. Search for forbidden directions of elastic surface-wave propagation in anisotropic crystals // J. Appl. Phys. 1968. V. 39. P. 4319–4325. https://doi.org/10.1016/j.jappmathmech.2006.03.004
  14. Lim T.C., Farnell G.W. Character of pseudo surface waves on anisotropic crystals // J. Acoust. Soc. Amer. 1969. V. 45. P. 845–851. https://doi.org/10.1121/1.1911556
  15. Farnell G.W. Properties of elastic surface waves // Phys. Acoust. 1970. V. 6. P. 109–166. https://doi.org/B978-0-12-395666-8.50017-8
  16. Hartman P. Ordinary Differential Equations. N.Y.: Wiley, 1964. 612 p.
  17. Golub G.H., Van Loan C.F. Matrix Computations (3rd ed.). Baltimore: Johns Hopkins University Press, 1996. 750 p.
  18. Stroh A.N. Dislocations and cracks in anisotropic elasticity // Philos. Mag. 1958. V. 3. P. 625–646. https://doi.org/10.1080/14786435808565804
  19. Stroh A.N. Steady state problems in anisotropic elasticity // J. Math. Phys. 1962. V. 41. P. 77–103.
  20. Mase G.T. Rayleigh wave speeds in transversely isotropic materials // J. Acoust. Soc. Am. 1987. V. 81. № 5. P. 1441–1446.
  21. Wu K.C. Generalization of the Stroh formalism to 3-dimensional anisotropic elasticity // J. Elast. 1998. V. 51. P. 213–225. https://doi.org/10.1023/A:1007523219357
  22. Hwu C. Stroh-like formalism for the coupled stretching-bending analysis for composite laminates // Int. J. Solids Struct. 2003. V. 40. P. 3681–3705. https://doi.org/10.1016/S0020-7683(03)00161-6
  23. Hwu C., Becker W. Stroh formalism for various types of materials and deformations // J. Mech. 2022. V. 38. P. 433–444. https://doi.org/10.1093/jom/ufac031
  24. Fu Y.B. Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity // Proc. Roy. Soc. A. 2007. V. 463. P. 3073–3087. https://doi.org/10.1098/rspa.2007.0093
  25. Edmondson R.T., Fu Y.B. Stroh formulation for a generally constrained and pre-stressed elastic material // Int. J. Non-Linear Mech. 2009. V. 44. P. 530–537. https://doi.org/10.1016/j.ijnonlinmec.2008.11.001
  26. Kuznetsov S.V. Abnormal dispersion of flexural Lamb waves in functionally graded plates // Z. Angew. Math. Phys. 2019. V. 70. Paper 89. https://doi.org/10.1007/s00033-019-1132-0
  27. Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
  28. Kuznetsov S.V. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence // Waves Random Complex Media. 2021. V. 31. P. 1540–1549. https://doi.org/10.1080/17455030.2019.1683257
  29. Michalski K.A., Mosig J.R. The Sommerfeld half-space problem revisited: from radio frequencies and Zenneck waves to visible light and Fano modes // J. Electromagnetic Waves Appl. 2016. V. 30. P. 1–42. https://doi.org/10.1080/09205071.2015.1093964
  30. Shanin A.V., Korolkov A.I. Sommerfeld-type integrals for discrete diffraction problems // Wave Motion. 2020. V. 97. Paper 102606. https://doi.org/10.1016/j.wavemoti.2020.10260
  31. Barnett D.M., Lothe J. Free surface (Rayleigh) waves in anisotropic elastic half-spaces: The surface impedance method // Proc. R. Soc. Lond. A. 1985. V. 402. P. 135–152. https://doi.org/10.1098/rspa.1985.0111
  32. Tanuma K. Stroh Formalism and Rayleigh Waves. In: Stroh Formalism and Rayleigh Waves. Springer: Dordrecht, 2007.
  33. Wang L. Space of degeneracy in the Stroh eigensystem and surface waves in transversely isotropic elastic media // Wave Motion. 2004. V. 40. P. 173–190.
  34. Ting T.C.T. An explicit secular equation for surface waves in an elastic material of general anisotropy // Q. J. Mech. Appl. Math. 2002. V. 55. P. 297–311. https://doi.org/10.1016/j.wavemoti.2004.03.001
  35. Djeran-Maigre I., Kuznetsov S.V. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys. 2014. V. 60. P. 200–207. https://doi.org/10.1134/S106377101402002X
  36. Pease III M.C., Methods of Matrix Algebra, London: Academic Press, 1965. 424 p.
  37. Habgood K., Arel I. A condensation-based application of Cramer’s rule for solving large-scale linear systems // J. Discrete Algorithms. 2012. V. 10. P. 98–109.
  38. Goldstein R.V., Kuznetsov S.V. Long-wave asymptotics of Lamb waves // Mech. Solids. 2018. V. 52. P. 700–707. https://doi.org/10.3103/S0025654417060097
  39. Ilyashenko A.V. et al. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russian Journal of Nondestructive Testing. 2017. V. 53(4). P. 243–259. https://doi.org/10.1134/S1061830917040039
  40. Li S. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // European Journal of Environmental and Civil Engineering. 2020. V. 24(14). P. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
  41. Li S. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Computers and Geotechnics. 2021. V. 131. Article 103808. https://doi.org/10.1080/19648189.2018.1506826

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Half-space; n is the wave vector; ν is the unit normal to the free boundary

Жүктеу (28KB)
3. Fig. 2. Homogeneous anisotropic layer with free boundaries of thickness 2h

Жүктеу (36KB)

© Russian Academy of Sciences, 2024