Половые стероиды и функции головного мозга


Цитировать

Полный текст

Аннотация

За последние десятилетия значительно расширились ключевые представления о модулирующем действии половых гормонов на структуру и функции мозга в течение жизни человека. Трофические эффекты половых гормонов возникают на раннем этапе развития мозга, влияют на половую дифференциацию и сохраняются на протяжении подросткового периода и взрослой жизни. Половые стероиды участвуют в регуляции функции гипоталамо-гипофизарно-гонадной оси. Нейростероиды синтезируются в коре головного мозга, гиппокампе и миндалине и являются эндогенными модуляторами нервной возбудимости; существует все больше доказательств седативных, анксиолитических, обезболивающих и противосудорожных свойств нейростероидов. Прогестерон и аллопрегнанолон участвуют в адаптации к стрессу, имеют иммуномодулирующую активность и цитопротекторные свойства. Нейростероиды обладают потенциальными терапевтическими возможностями, связанными с молекулярными механизмами прерывания эпилептогенеза и модуляцией нейровоспаления и нейрогенеза в головном мозге.

Полный текст

Прорывное развитие науки в области нейростероидов за последние десятилетия значительно расширило ключевые представления о действии половых гормонов за пределами репродуктивной сферы [1-6]. Мозг представляет собой важную мишень для эффектов прогестерона, тестостерона и эстрогена. Половые стероиды обеспечивают специфические нейроэндокринные состояния, посредством которых структура и функции мозга модулируются в течение жизни человека. Трофические эффекты половых гормонов возникают на раннем этапе развития мозга и сохраняются на протяжении подросткового периода и взрослой жизни [7]. Действие половых стероидов происходит и в областях мозга, отвечающих за обучение, память, эмоции, мотивацию, познавательную способность [8-12]. Половые гормоны оказывают ключевое влияние на развитие и пластичность мозга. Специфические структурные эффекты половых стероидов реализуются в разрастании нейритов, синаптогенезе, дендритном ветвлении, миелинизации и других важных механизмах нервной пластичности [13, 14]. Половые стероиды играют важную роль в воспалительных реакциях, реакциях на стресс, костном метаболизме, сердечно-сосудистой компетентности, поведении, познании и настроении [15-20]. Гипоталамо-гипофизарно-гонадная ось Концептуальная модель Харриса по контролю гипоталамо-гипофизарной системой функции половых желез выдержала испытание временем и была дополнена за последние десятилетия деталями на клеточном и молекулярном уровнях. Нейроэндокринный секреторный комплекс - это морфофункциональное объединение, отвечающее за регуляцию вегетативных функций человеческого тела. Его работа обеспечивается динамическим взаимодействием гипоталамуса, где примерно 1 тыс. рассеянных нейронов синтезируют и высвобождают гонадотропин-рилизинг-гормон (ГнРГ), передней доли гипофиза, где секретируются гонадотропины, лютеинизирующий, фолликулостимулирующий гормоны и гонад, которые не только вырабатывают гаметы, но и ответственны за синтез и высвобождение половых стероидов, а также пептидных гормонов [21-24]. Типичный ГнРГ-нейрон имеет два дендрита, которые, согласно исследованиям, проведенным современными морфологическими методами, могут проходить значительные расстояния (до 2-3 мм) от тела клетки [25]. Гипоталамические ГнРГ-нейроны имеют транссинаптические и глиальные входы для выделения ГнРГ к портальной кровеносной системе гипофиза. Секреция ГнРГ происходит в пульсирующем режиме, регуляторное действие на ГнРГ-нейроны оказывают нейроны, вырабатывающие кисспептин, нейрокинин В и динорфин, а также глутамат, g-аминомасляная кислота (ГАМК), эндогенные опиоидные пептиды, норадреналин, пептиды RF [26]. Функция гипоталамо-гипофизарно-гонадной (ГГГ)-оси также регулируется осуществляющими обратную связь периферическими гормонами, которые включают половые стероиды. Тестостерон яичкового происхождения производит ингибирующее действие на секрецию ГнРГ/гонадотропин (отрицательная обратная связь), овариальные стероиды, в основном эстрадиол и прогестерон, могут осуществлять как отрицательную, так и положительную обратную связь в зависимости от фазы цикла яичника. Другими периферическими регуляторами ГГГ-оси являются метаболические гормоны, среди них лептин, производимый белой жировой тканью, осуществляющий положительную обратную связь [27]. Стероидные гормоны играют важную роль как в центральной (ЦНС), так и в периферической нервной системе, они действуют во время развития, роста, созревания и дифференцировки нейронов [28]. Созревание ГГГ-оси очень чувствительно к дородовому и послеродовому стрессу, что приводит к неблагоприятным изменениям в поведении и нейроэндокринных реакциях на стресс во взрослой жизни [29]. Дисрегуляция ГГГ-оси участвует в патогенезе целого ряда стресс-ассоциированных психических и неврологических заболеваний, включая аутизм, депрессию, посттравматическое стрессовое расстройство, биполярное расстройство, болезнь Альцгеймера, наркоманию [30-33]. Пути биосинтеза половых стероидов Стероидные гормоны вырабатываются в коре надпочечников, семенниках, яичниках и в периферических тканях, таких как жировая ткань, мозг. Все стероидные гормоны являются растворимыми в липидах производными холестерина и отличаются только структурой кольца и присоединенными к нему боковыми цепями. В головном мозге необходимый уровень эндогенных стероидов обеспечивается из центральных или периферических источников [34]. Регулирование стероидогенеза включает в себя контроль ферментов, которые модифицируют холестерин в необходимый стероидный гормон или его метаболит (рис. 1). Рис. 1. Биосинтез половых стероидов [35]. Рис. 2 Нейрональные, генетические и поведенческие эффекты прогестерона и аллопрегнанолона [52]. Первой ферментативной стадией синтеза любого стероидного гормона является превращение холестерина в прегненолон. Катализирует эту реакцию фермент цитохром P450scc, который расположен во внутренней митохондриальной мембране. Ограничивает скорость данного процесса стероидогенный острый регуляторный белок (StAR), с помощью него происходит перенос свободного холестерина из цитоплазмы клетки в митохондрии. Прогестерон синтезируется из прегненолона под действием фермента 3b-гидроксистероиддегидрогеназы. Тестостерон трансформируется из прегненолона с помощью пяти микросомальных ферментов двумя путями: через образование дегидроэпиандростерона и через образование прогестерона. Эстрогены образуются из андростендиона под действием ароматазного комплекса, содержащего цитохром Р450-оксидазу [36]. Новая эра нейростероидов Нейростероиды являются ключевыми эндогенными молекулами в мозге, которые влияют на многие нейронные функции. Они синтезируются в коре головного мозга, гиппокампе и миндалине и модулируют возбудимость головного мозга [37]. Известно, что астроциты и нейроны головного мозга экспрессируют фермент цитохром Р450 (CYP450scc), который преобразует холестерин в прегненолон, промежуточный, необходимый для синтеза нейростероидов [38]. Также в головном мозге обнаружен фермент 3b-гидроксистероиддегидрогеназа, необходимый для дальнейшего превращения прегненолона в прогестерон [39]. В настоящее время нейростероиды классифицируются как прегнановые нейростероиды, к которым относятся аллопрегнанолон и аллотетрагидродеоксикортикостерон, производные андростана (андростендиол и этиохоланон) и сульфатированные нейростероиды (прегненолон сульфат и дегидроэпиандростерона сульфат) [40]. Преимущественно фармакологические эффекты нейростероидов осуществляются в основном в результате потенцирования ГАМКА-рецепторов, основных тормозных рецепторов в ЦНС. Аллопрегнанолон-подобные нейростероиды являются мощными аллостерическими агонистами, а также прямыми активаторами обоих синаптических и внесинаптических рецепторов ГАМКА [36]. Полученная в рецепторах ГАМКА с помощью ионов хлора электрическая проводимость генерирует форму маневрового торможения, которая управляет сетевой возбудимостью, судорожной активностью и поведением [37]. Эти механизмы действия нейростероидов предоставляют инновационные методы лечения эпилепсии, эпилептического статуса, черепно-мозговой травмы, химической нейротоксичности [41-45]. Нейростероиды являются эндогенными модуляторами нервной возбудимости. Существует все больше доказательств седативных, обезболивающих и противосудорожных свойств нейростероидов, а также их влияния на настроение. Аллопрегнанолон и адаптация к стрессу В последнее время большой клинический интерес вызывает активный метаболит прогестерона - аллопрегнанолон, который синтезируется как в надпочечниках, так и нервной системе. Считается, что нерепродуктивные эффекты прогестерона в основном опосредуются аллопрегнанолоном, который не связывается с простагландиновыми рецепторами, широко распространенными в мозге, но выступает в качестве мощного положительного модулятора рецепторов ГАМКА [45, 46]. Прогестерон и аллопрегнанолон связаны с адаптацией к стрессу, увеличение производства прогестерона в головном мозге может быть частью реакции нервных клеток на повреждение, что обусловлено защитными и трофическими эффектами прогестерона. В связи с этим в клинических исследованиях в настоящее время изучается терапевтический потенциал прогестерона в качестве нейропротекторного и промиелинизирующего агента [47]. В 1940-х годах венгерский эндокринолог Ганс Селье показал, что некоторые прегнановые стероиды могут относительно быстро вызвать седативный эффект и анестезию - свойство, которое исключает геномное действие [48]. Молекулярный механизм, лежащий в основе быстрого угнетающего действия прегнановых стероидов, оставался неизвестным до начала 1980-х годов, когда Харрисон и Симмондс (1984 г.) обнаружили, что функция структурно родственного им синтетического стероидного анестетика альфаксалона осуществляется через активацию ГАМКА-рецептора [49]. ГАМКА-рецепторы ответственны за опосредование большинства быстрых ингибирующих нейротрансмиссий в ЦНС и являются мишенью для ряда клинически значимых соединений, в том числе бензодиазепинов, разнообразных структурно различных общих анестетиков и противосудорожных средств (включая пропофол, барбитураты) [50]. В настоящее время значительно расширились наши представления о спектре действия половых стероидов. Оказалось, что они вовлечены в регуляцию сложных поведенческих актов, иммунной и сердечно-сосудистой системы организма. Действительно, наблюдаемое усиление функции ГАМКА-рецепторов такими стероидами согласуется с их поведенческими действиями (анксиолитическим, противосудорожным, седативным, обезболивающим), в связи с чем они рассматриваются в качестве эндогенных регуляторов функции ГАМКA-рецепторов (рис. 2) [51, 52]. Психофармакологические эффекты нейростероидов За счет регуляции функции ГАМКА-рецепторов осуществляется действие и других нейростероидов, при этом аллопрегнанолон, андростендион и тетрагидродеоксикортикостерон оказывают потенцирующее действие, усиливая тормозные процессы. Таким образом, их фармакологическое действие заключается в седативном, анксиолитическом, противосудорожном, аналгезирующем, антистрессовом, нейропротекторном эффектах [53-59]. Напротив, сульфатные соединения прегненолона и дегидро-эпиандростерона ингибируют функцию ГАМКА-рецепторов, тем самым вызывая активирующие процессы, что клинически проявляется улучшением памяти, нейропротекторным, анксиогенным, а также проконвульсантным эффектами [60, 61]. Плейотропное действие нейростероидов в головном мозге, прежде всего аллопрегнанолона и аллотетрагидродеоксикортикостерона, осуществляется в виде повышения выживаемости нейронов, пролиферации нервных клеток-предшественников, шванновских клеток, нейрогенеза и миелинизации аксонов, регуляции функции глиальных клеток, влияния на нервную возбудимость, когнитивные функции, а также на воспаление, что особенно актуально при недоношенности, черепно-мозговых травмах, инсультах [62-64]. Интересно, что эндогенные уровни нейростероидов в ЦНС не являются статичными, а динамически регулируются в ответ на ряд физиологических состояний, включая стресс, период полового созревания, беременность, а также во время менструального цикла [65, 66]. Тревога, послеродовая депрессия, предменструальное напряжение, так же как и прием некоторых психоактивных средств, могут возмущать уровни нейростероидов в ЦНС [67, 68]. Известно, что уровни эндогенных нейростероидов в плазме крови и цереброспинальной жидкости изменяются у пациентов, страдающих от различных связанных со стрессом аффективных расстройств [69]. Также обнаружено, что лечение флуоксетином стабилизирует уровень нейростероидов в ЦНС при депрессии и паническом расстройстве, таким образом, по крайней мере часть терапевтического эффекта селективных ингибиторов обратного захвата серотонина может осуществляться через влияние на нейростероиды [67]. Нейростероиды могут быть эндогенными стабилизаторами настроения, изменение их функционирования на генетическом или биохимическом уровне может быть ответственно за проявление симптомов у лиц, подверженных биполярному расстройству [70]. Нейростероиды, возможно, играют определенную роль в воссоздании нейрональной пластичности (ремоделирование дендритов и синаптических контактов) в некоторых областях мозга, и особенно в гиппокампе, во время восстановления от депрессивных эпизодов [71]. Нейростероиды и половые различия ЦНС Гормоны влияют на развитие нейронов и формирование нейронных цепей в мозге, модулируют его активность через возбуждающие и тормозные механизмы [72]. Развитие полового диморфизма в строении головного мозга происходит в основном из-за «хромосомного пола» (XX или XY), тестостерона и его метаболитов, которые определяют организацию мозга по мужскому типу [73, 74]. Прогестерон является субстратом для раннего тестикулярного синтеза тестостерона у плодов мужского пола, который начинается с 6-7-й недели беременности и достигает пика к 12-16-й неделе [75]. Во время эмбрионального и постнатального развития стероидные гормоны вызывают дифференцировку дискретных областей головного мозга посредством модуляции специфических нейрональных и глиальных клеточных компонентов, непосредственно участвующих в синаптогенезе и миелиногенезе [73]. На клеточном уровне половые различия в нервной системе включают размеры ядра и ядрышка в нейронах, синаптических везикул и терминалов, а также шаблонов дендритных ветвлений - все это ведет к различиям в структуре, связности и распределении нейромедиаторов [76]. Данные гормонозависимые половые различия включают такие участки мозга, как преоптическое ядро, миндалина, гиппокамп, гипоталамус, кора, черная субстанция и полосатое тело. Такие половые различия могут развиваться в критический период для половой дифференциации. В течение этого периода развития ЦНС более чувствительна к организационному воздействию половых гормонов (импринтинг-эффект). Цитопротекторные эффекты прогестерона и его метаболита аллопрегнанолона Нейровоспаление и нейродегенеративные процессы ассоциируют с последствиями черепно-мозговой травмы, инсульта, инфекций, а также с эпилептогенезом [77]. В настоящее время происходит интенсивный поиск лекарств, которые действительно предотвратят развитие эпилепсии у подверженных риску людей. Гормоны играют важную роль у детей и взрослых с эпилепсией. Было показано на животных моделях и в клинических исследованиях, что кортикостероиды, прогестерон, эстрогены и нейростероиды влияют на судорожную активность [60, 78]. Прогестерон обладает иммуномодулирующей активностью в эпилептогенных моделях [78, 79]. Антиэпилептогенный эффект прогестерона объясняется его преобразованием в нейростероиды, которые связываются с рецепторами ГАМКА и усиливают процессы торможения в головном мозге. Потенциальные терапевтические возможности нейростероидов обусловлены не только молекулярными механизмами прерывания эпилептогенеза, но и модуляцией нейровоспаления и нейрогенеза в головном мозге [77]. Например, аллопрегнанолон может уменьшить апоптотические последствия во время инсульта или черепно-мозговой травмы благодаря ингибированию митохондриальной проницаемости [80, 81]. Было показано, что ГАМК-рецепторы модулируют выживаемость клеток, в частности в моделях с эксцитотоксичностью, таким образом, регуляция аллопрегнанолоном ГАМКА-рецептора может иметь отношение к защитному действию прогестерона. В многочисленных исследованиях выявлены и другие неклассические цитопротекторные эффекты прогестерона, в том числе на процессы миелинизации, пролиферацию и дифференцировку олигодендроцитов, что демонстрирует сложность его действия на ткани-мишени [82, 83]. Заключение Прорывное развитие науки последние годы значительно расширило ключевые представления о действии половых гормонов за пределами репродуктивной сферы, генерировало поиск нового понимания психических расстройств и механизмов их развития, в том числе при заболеваниях мозга, а также привело к разработке новых терапевтических стратегий, использующих потенциал гормональных препаратов и нейростероидов.
×

Об авторах

Н Н Стеняева

ФГБУ «Научный центр акушерства, гинекологии и перинатологии им. акад. В.И.Кулакова» Минздрава России

Email: ataliasten@mail.ru
канд. мед. наук, ст. науч. сотр. отд-ния андрологии и урологии ФГБУ «НЦАГиП им. акад. В.И.Кулакова» 117997, Россия, Москва, ул. Академика Опарина, д. 4

Д Ф Хритинин

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России

чл.-кор. РАН, д-р мед. наук, проф. каф. психиатрии и наркологии лечебного фак-та ФГАОУ ВО «Первый МГМУ им. И.М.Сеченова» 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2

В Ю Григорьев

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России

студент 6-го курса лечебного фак-та ФГАОУ ВО «Первый МГМУ им. И.М.Сеченова» 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2

А А Куземин

ФГБУ «Научный центр акушерства, гинекологии и перинатологии им. акад. В.И.Кулакова» Минздрава России

канд. мед. наук, рук. стационара дневного пребывания ФГБУ «НЦАГиП им. акад. В.И.Кулакова» 117997, Россия, Москва, ул. Академика Опарина, д. 4

Список литературы

  1. Mc Henry J.A, Otis J.M, Rossi M.A et al. Hormonal control of a medial preoptic area social reward circuit. Nat Neurosci 2017; 20: 449-58. doi: 10.1038/nn.4487.
  2. Tyborowska A, Volman I, Smeekens S et al. Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex. J Neurosci 2016; 36 (23): 6156-64. doi: 10.1523/JNEUROSCI.3874-15.2016.
  3. Bender R.A, Zhou L, Vierk R et al. Sex - Dependent Regulation of Aromatase - Mediated Synaptic Plasticity in the Basolateral Amygdala. J Neurosci 2017; 37 (6): 1532-45. doi: 10.1523/JNEUROSCI.1532-16.2016.
  4. Herting M.M, Sowell E.R. Puberty and structural brain development in humans. Front Neuroendocrinol 2017; 44: 122-37. doi: 10.1016/j.yfrne.2016.12.003.
  5. Ma J, Huang S, Qin S et al. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 2016; 12: CD008409. doi: 10.1002/14651858.CD008409.pub4.
  6. Csaba G. The Present and Future of Human Sexuality: Impact of Faulty Perinatal Hormonal Imprinting. Sex Med Rev 2017; 5 (2): 163-9. doi: 10.1016/j.sxmr.2016.10.002.
  7. Juraska J.M, Sisk C.L, Don Carlos L.L. Sexual differentiation of the adolescent rodent brain: hormonal influences and developmental mechanisms. Horm Behav 2013; 64 (2): 203-10. doi: 10.1016/j.yhbeh.2013.05.010.
  8. Sakaki M, Mather M. How reward and emotional stimuli induce different reactions across the menstrual cycle. Soc Personal Psychol Compass 2012; 6 (1): 1-17. doi: 10.1111/j.1751-9004.2011.00415.x.
  9. Barber S.J, Opitz P.C, Martins B et al. Thinking about a limited future enhances the positivity of younger and older adults’ recall: support for socioemotional selectivity theory. Memory Cognition 2016; 44 (6): 869-82. doi: 10.3758/s13421-016-0612-0.
  10. Nashiro K, Sakaki, M, Braskie M.N, Mather M. Resting - state networks associated with cognitive processing show more age - related decline than those associated with emotional processing. Neurobiol Aging 2017.
  11. Duarte-Guterman P, Yagi S, Chow C, Galea L.A. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74: 37-52. doi: 10.1016/j.yhbeh.2015.05.024.
  12. Li M, Lu S, Wang G et al. Emotion, working memory, and cognitive control in patients with first - onset and previously untreated minor depressive disorders. J Int Med Res 2016; 44 (3): 529-41. doi: 10.1177/0300060516639169.
  13. Losecaat Vermeer A.B, Riečanský I, Eisenegger C. Competition, testosterone, and adult neurobehavioral plasticity. Prog Brain Res 2016; 229: 213-38. doi: 10.1016/bs.pbr.2016.05.004.
  14. Opendak M, Briones B.A, Gould E. Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41: 71-86. doi: 10.1016/j.yfrne.2016.02.002.
  15. Chen Z, Xi G, Mao Y et al. Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir (Suppl.) 2011; 111: 289-93. doi: 10.1007/978-3-7091-0693-8_48.
  16. De Sousa M.B, Galvão A.C, Sales C.J et al. Endocrine and Cognitive Adaptations to Cope with Stress in Immature Common Marmosets (Callithrix jacchus): Sex and Age Matter. Front Psychiatry 2015; 6: 160. doi: 10.3389/fpsyt.2015.00160.
  17. Akdis D, Saguner A.M, Shah K et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte - based model to clinical biomarkers of disease outcome. Eur Heart J 2017. doi: 10.1093/eurheartj/ehx011.
  18. Clegg D, Hevener A.L, Moreau K.L et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology 2017. doi: 10.1210/en.2016-1677.
  19. Pompili A, Arnone B, D'Amico M et al. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology 2016; 65: 94-101. doi: 10.1016/j.psyneuen.2015.12.013.
  20. Halaris A. Inflammation - Associated Co - morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31: 45-70. doi: 10.1007/7854_2016_28.
  21. Handa R.J, Burgess L.H, Kerr J.E, O'Keefe J.A. Gonadal steroid hormone receptors and sex differences in the hypothalamo - pituitary - adrenal axis. Horm Behav 1994; 28 (4): 464-76.
  22. Goel N, Workman J.L, Lee T.T et al. Sex differences in the HPA axis. Compr Physiol 2014; 4 (3): 1121-55. doi: 10.1002/cphy.c130054.
  23. Wang F, Pereira A. Neuromodulation, Emotional Feelings and Affective Disorders. Mens Sana Monogr 2016; 14 (1): 5-29. doi: 10.4103/0973-1229.154533.
  24. Pinilla L, Aguilar E, Dieguez C et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012; 92 (3): 1235-316. doi: 10.1152/physrev.00037.2010.
  25. Herde M.K, Iremonger K.J, Constantin S, Herbison A.E. GnRH neurons elaborate a long - range projection with shared axonal and dendritic functions. J Neurosci 2013; 33 (31): 12689-97. doi: 10.1523/JNEUROSCI.0579-13.2013.
  26. Goodman R.L, Coolen L.M, Lehman M.N. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 9 (1): 18-32. doi: 10.1159/000355285.
  27. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397 (1-2): 4-14. doi: 10.1016/j.mce.2014.09.027.
  28. Beijers R, Buitelaar J.K, de Weerth C. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur Child Adolesc Psychiatry 2014; 23 (10): 943-56. doi: 10.1007/s00787-014-0566-3.
  29. Wood C.E, Walker C.D. Fetal and Neonatal HPA Axis. Compr Physiol 2015; 6 (1): 33-62. doi: 10.1002/cphy.c150005.
  30. Sharpley C.F, Bitsika V, Andronicos N.M, Agnew L.L. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol Behav 2016; 167: 110-7. doi: 10.1016/j.physbeh.2016.09.003.
  31. Keller J, Gomez R, Williams G et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22 (4): 527-36. doi: 10.1038/mp.2016.120.
  32. Dalvie S, Fabbri C, Ramesar R et al. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol - and substance use disorders. Metab Brain Dis 2016; 31 (1): 183-9. doi: 10.1007/s11011-015-9762-1.
  33. Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17 (3): 174-86. doi: 10.3109/15622975.2015.1085597.
  34. Belda X, Fuentes S, Daviu N et al. Stress - induced sensitization: the hypothalamic - pituitary - adrenal axis and beyond. Stress 2015; 18 (3): 269-79. doi: 10.3109/10253890.2015.1067678.
  35. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wiki J Med 2014; 1 (1). doi: 10.15347/wjm/2014.005.
  36. Schumacher M, Mattern C, Ghoumari A et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6-39. doi: 10.1016/j.pneurobio.2013.09.004.
  37. Gunn B.G, Brown A.R, Lambert J.J, Belelli D. Neurosteroids and GABAA receptor interactions: a focus on stress. Front Neurosci 2011; 131 (5). doi: 10.3389/fnins.2011.00131.
  38. Patte-Mensah C, Kappes V, Freund-Mercier M.J et al. Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450 side chain cleavage, in sensory neural pathways. J Neurochem 2003; 86 (5): 1233-46. doi: 10.1046/j.1471-4159.2003.01935.x.
  39. Rossetti M.F, Cambiasso M.J, Holschbach M.A, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28 (7). doi: 10.1111/jne.12402.
  40. Carta M.G, Bhat K.M, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. doi: 10.1186/1744-9081-8-61.
  41. Reddy D.S, Estes W.A. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37 (7): 543-61. doi: 10.1016/j.tips.2016.04.003.
  42. Tang F.R, Loke W.K, Ling E.A. Comparison of status epilepticus models induced by pilocarpine and nerve agents - a systematic review of the underlying aetiology and adopted therapeutic approaches. Curr Med Chem 2011; 18 (6): 886-99. doi: 10.2174/092986711794927720.
  43. Wang Y, Oguntayo S, Wei Y et al. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs. Neurotoxicology 2012; 33 (2): 169-77. doi: 10.1016/j.neuro.2011.12.018.
  44. Wright D.W, Yeatts S.D. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26): 2457-66. doi: 10.1056/NEJMoa1404304.
  45. Crowley T, Cryan J.F, Downer E.J, O'Leary O.F. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro - immune interactions. Brain Behav Immun 2016; 54: 260-77. doi: 10.1016/j.bbi.2016.02.001.
  46. Sieghart W. Allosteric modulation of GABAA receptors via multiple drug - binding sites. Adv Pharmacol 2015; 72: 53-96. doi: 10.1016/bs.apha.2014.10.002.
  47. Labombarda F, Garcia-Ovejero D. Give progesterone a chance. Neural Regen Res 2014; 9 (15): 1422-4. doi: 10.4103/1673-5374.139456.
  48. Selye H. Stress and disease. Science 1955; 122: 625-31. doi: 10.1126/science.122.3171.625.
  49. Harrison N.L, Simmonds M.A. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 1984; 323 (2): 287-92.
  50. Olsen R.W, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (1): 141-8. doi: 10.1016/j.neuropharm.2008.07.045.
  51. Longone P, di Michele F, D'Agati E et al. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55. doi: 10.3389/fendo.2011.00055.
  52. Wirth M.M. Beyond the HPA axis: progesterone - derived neuroactive steroids in human stress and emotion Front. Endocrinol 2011. https://DOI.org/10.3389/fendo.2011.00019
  53. Kinch M.S. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015; 20: 3-6. http://dx.DOI.org/10.1016/j.drudis.2014.09.002
  54. Tvrdeić A, Poljak L. Neurosteroids, GABAA receptors and neurosteroid based drugs: are we witnessing the dawn of the new psychiatric drugs? Endocrine Oncol Metabolism 2016; 2 (1): 60-71. doi: 10.21040/eom/2016.2.7.
  55. Skolnick P. Anxioselective anxiolytics: On a quest of holly grail. Trends Pharmacol Sci 2012; 33: 611-20. http://dx.DOI.org/10.1016/j.tips.2012.08.003
  56. Choi Y.M, Kim K.H. Etifoxine for pain patients with anxiety. Korean J Pain 2015; 28: 4-10. http://dx.DOI.org/10.3344/kjp.2015.28.1.4
  57. Wang D, Tian Z, Guo Y et al. Anxiolytic - like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11: 1-10. http://dx.DOI.org/10.1186/s12990-015-0013-6
  58. Barron A.M, Garcia-Segura L.M, Caruso D et al. Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013; 33: 8891-7. http://dx.DOI.org/10.1523/JNEUROSCI.1350-13.2013
  59. Scholz R, Caramoy A, Bhuckory M.B et al. Targeting translocator protein (18 kDa) (TSPO) dampens pro - inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015; 12: 201. http://dx.DOI.org/10.1186/s12974-015-0422-5
  60. Reddy D.S. Neurosteroids: Endogenous Role in the Human Brian and Therapeutic Potentials. Prog Brain Res 2010; 186: 113-37. doi: 10.1016/B978-0-444-53630-3.00008-7.
  61. Svob Strac D, Vlainic J, Samardzic J et al. Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice. Drug Des Devel Ther 2016; 10: 1201-15. doi: 10.2147/DDDT.S102102. eCollection 2016.
  62. Toy D, Namgung U. Role of Glial Cells in Axonal Regeneration. Exp Neurobiol 2013; 22 (2): 68-76. doi: 10.5607/en.2013.22.2.68.
  63. Robertson C.L, Fidan E, Stanley R.M et al. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury. Pediatr Crit Care Med 2015; 16 (3): 236-44. doi: 10.1097/PCC.0000000000000323.
  64. Skolnick B.E, Maas A.I, Narayan R.K et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med 2014; 371: 2467-76. doi: 10.1056/NEJMoa1411090.
  65. Shen L, Saykin A.J, Kim S et al. Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging Behav 2010; 4 (1): 86-95. doi: 10.1007/s11682-010-9088-x.
  66. Maguire J, Mody I. Steroid Hormone Fluctuations and GABAAR Plasticity. Psychoneuroendocrinology 2009; 34 (Suppl. 1): S84-S90. DOI: 10.1016/ j.psyneuen.2009.06.019.
  67. Longone P, di Michele F, D’Agati E et al. Neurosteroids as Neuromodulators in the Treatment of Anxiety Disorders. Front Endocrinol (Lausanne) 2011; 2: 55. doi: 10.3389/fendo.2011.00055.
  68. Licheri V, Talani G, Gorule A.A et al. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function. Neural Plast 2015; 2015: 170435. doi: 10.1155/2015/170435.
  69. Uzunova V, Sampson L, Uzunov D.P. Relevance of endogenous 3alpha - reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 2006; 186 (3): 351-61. doi: 10.1007/s00213-005-0201-6.
  70. Carta M.G, Bhat K.M, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8: 61. doi: 10.1186/1744-9081-8-61.
  71. Liu W, Ge T, Leng Y et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017. Art. ID 6871089, 11 phttps://DOI.org/10.1155/2017/6871089.
  72. Velíšková J, De Santis K.A. Sex and Hormonal influences on Seizures and Epilepsy Horm Behav 2013; 63 (2): 267-77. doi: 10.1016/j.yhbeh.2012.03.018.
  73. Bramble M.S, Roach L, Lipson A et al. Sex - Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Reports 2016; 6. Art: 36916. doi: 10.1038/srep36916.
  74. Blaschko S.D, Cunha G.R, Baskin L.S. Molecular Mechanisms of External Genitalia Development. Differentiation 2012; 84 (3): 261-8. doi: 10.1016/j.diff.2012.06.003.
  75. Bartke A, Klemcke H, Amador A. Effects of testosterone, pregnenolone, progesterone and cortisol on pituitary and testicular function in male golden hamsters with gonadal atrophy induced by short photoperiods. J Endocrinol 1981; 90 (1): 97-102.
  76. Stuart Tobet S.J, Gabriel Knoll J.G, Hartshorn C et al. Brain sex differences and hormone influences. A moving experience? J Neuroendocrinol 2009; 21 (4): 387-92. doi: 10.1111/j.1365-2826.2009.01834.x.
  77. Webster K.M, Sun M, Crack P et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflam 2017; 14: 10. doi: 10.1186/s12974-016-0786-1.
  78. Reddy D.S. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7: 115. doi: 10.3389/fncel.2013.00115.
  79. Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for Acute Traumatic Brain Injury: A Systematic Review of Randomized Controlled Trials. Published: October 16, 2015. http://dx.DOI.org/10.1371/journal.pone.0140624
  80. De Nicola A.F, Labombarda F, Deniselle M.C et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30: 173-87. doi: 10.1016/j.yfrne.2009.03.001.
  81. Cheng G, Kong R, Zhang L, Zhang J. Mitochondria in traumatic brain injury and mitochondrial - targeted multipotential therapeutic strategies Br J Pharmacol 2012; 167 (4): 699-719. doi: 10.1111/j.1476-5381.2012.02025.x.
  82. Singh M, Chang Su C, Selena N.S. Non - genomic mechanisms of progesterone action in the brain Front Neurosci 2013; 7: 159. doi: 10.3389/fnins.2013.00159.
  83. Nin M.S, Martinez L.A, Pibiri F et al. Neurosteroids reduce social isolation - induced behavioral deficits: a proposed link with neurosteroid - mediated upregulation of BDNF expression. Front Endocrinol (Lausanne) 2011; 2: 73. doi: 10.3389/fendo.2011.00073.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-63961 от 18.12.2015.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах