SUPPRESSION OF SPECKLE NOISE IN MEDICAL IMAGES VIA SEGMENTATION-GROUPING OF 3D OBJECTS USING SPARSE CONTOURLET REPRESENTATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Novel filtering method in medical images (MRI and US) that are contaminated by noise consisting of mixture speckle and additive noise is designed in this paper. Proposed method consists of several stages: segmentation of image areas, grouping of similar 2D structures in accordance mutual information (MI) measure, homomorphic transformation, 3D filtering approach based on sparse representation in contourlet (CLT) space with posterior filtering in accordance with MI weights similar 2D structures, and final inverse homomorphic transformation. During numerous experiments, the developed method has confirmed their superiority in term of visual image quality via human visual perception as well as in better criteria values, such as PSNR, SSIM, EPI and alfa for different test MRI and US mages corrupted by speckle noise.

Sobre autores

V. Kravchenko

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: kvf-ok@mail.ru
Russian Federation, Moscow; Russian Federation, Moscow

Yu. Guliaev

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: gulyaev@cplire.ru
Russian Federation, Moscow

V. Ponomaryov

Instituto Politecnico Nacional de Mexico

Autor responsável pela correspondência
Email: vponomar@ipn.mx
Mexico, Mexico

G. Bojorges

Instituto Politecnico Nacional de Mexico

Autor responsável pela correspondência
Email: gibran.aranda.bionics@gmail.com
Mexico, Mexico

Bibliografia

  1. Кравченко В.Ф., Пономарев В.И., Пустовойт В.И., Аранда-Бохоргес Г. // Доклады РАН. Математика, информатика, процессы управления. 2021. Т. 499. № 2. С. 67–72.
  2. Aranda-Bojorges G., Ponomaryov V., Reyes-Reyes R., Cruz-Ramos C., Sadovnychiy S. // IEEE Geosci. Rem. Sens. Lett. 2020. V. 19, art. 4018005. https://doi.org/10.1109/LGRS.2021.3108774
  3. Reyes-Reyes R., Aranda-Bojorges G., Garcia-Salgado B., Ponomaryov V., Cruz-Ramos C., Sadovnychiy S. // Sensors. 2022. V. 22. 5113. https://doi.org/10.3390/s22145113
  4. Kravchenko V., Perez H., Ponomaryov V. Adaptive Signal Processing of Multidimensional Signals with Applications. Moscow: Fizmatlit, 2009.
  5. Dabov K., Foi A., Katkovnik V., Egiazarian K. // IEEE Trans. Image Process. 2007. V. 16. № 8. P. 2080–2095.
  6. Santos C.A.N., Martins D.L.N., Mascarenhas N.D.A. // IEEE Trans. Image Process. 2017. V. 26. 2632–2643. https://doi.org/10.1109/TIP.2017.2685339
  7. Sameera V.M.S., Sudhish N.G. // Sensing Imaging. 2017. V. 18. P. 1–28. https://doi.org/10.1007/s11220-017-0181-8
  8. Jubairahmed L., Satheeskumaran S., Venkatesan C. // Clust. Comput. 2019. V. 22. P. 11237–11246.
  9. Jaburalla M.Y., Lee H.N. // Appl. Sci. 2018. V. 8. 903. P. 1–17. https://doi.org/10.3390/app8060903
  10. Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S. // IEEE Trans. Pattern Anal. Mach. Intell. 2012. V. 34. P. 2274–2282.
  11. Jensen J.A. // Med. Biol. Eng. Comput. 1996. V. 34. P. 351–352.
  12. Wang Z., Bovik A. // IEEE Signal Process. Mag. 2009. V. 26. № 1. P. 98–117.
  13. https://openfmri.org/dataset/ (accessed: June21, 2022).
  14. http://splab.cz/en/download/databaze/ultrasound (accessed: June 19, 2022).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (375KB)
3.

Baixar (2MB)

Declaração de direitos autorais © В.Ф. Кравченко, Ю.В. Гуляев, В.И. Пономарев, Г. Аранда-Бохоргес, 2023