SEDIMENTARY ARCHIVES OF THE LATE GLACIAL–EARLY HOLOCENE, TERSKY COAST OF THE WHITE SEA (VARZUGA ESTUARY CASE STUDY)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Sedimentary paleoarchives of the Late- and Postglacial sediments accumulated in the Nizhnevarzugskaya tectonic depression and on its western flank were studied on the Tersky coast of the White Sea using lithostratigraphic analysis, radiocarbon dating, and GPR profiling. The consecutive succession of sedimentary setting from glacial through glaciolacustrine to marine has been established. For the first time on the White Sea coast the facial variability of basin sediments filling a large tectonic depression was revealed not only in the outcrops, but also laterally. The glaciolacustrine sediments represented by rhythmically bedded deposits were traced up to a height of 41 m a.s.l. Glaciolacustrine sediments documented at the bottom of the depression accumulated in a large proglacial lake, while on its side sediments accumulated in small depressions at the top of the till. At the bottom of the depression, glaciolacustrine rhythmites are overlaid above erosional surface by Holocene marine sediments consisting of two facies. The lower facie is represented by fine-grained cross-bedded sands with shells, which were deposited in the coastal shallow water at the beginning of the Holocene Tapes transgression (starting from ~9.4 cal. kyr BP). The relative sea level at that time was 9–10 m below the modern. The upper facie consists of mixed-grained layers of sand interlayered with gravel-pebble beds deposited later than 7.8 cal. kyr BP in the breakwater zone during the lowering of the relative sea level. According to existing geological and geomorphological data, the accumulation of marine sands at 43–22 m a.s.l. in the Nizhnevarzugskaya depression correlates with the Late Glacial-Early Holocene transgressive-regressive rhythm, and below 22 m a.s.l. with the Holocene transgression.

About the authors

N. E Zaretskaya

Institute of Geography RAS; Geological Institute of RAS

Email: n_zaretskaya@inbox.ru
Moscow, Russia; Moscow, Russia

T. Yu Repkina

Institute of Geography RAS

Email: n_zaretskaya@inbox.ru
Moscow, Russia

A. L Gurinov

Institute of Geography RAS

Email: n_zaretskaya@inbox.ru
Moscow, Russia

D. V Baranov

Institute of Geography RAS

Email: n_zaretskaya@inbox.ru
Moscow, Russia

N. N Lugovoy

Lomonosov Moscow State University, Department of Geography; Institute of Geography RAS

Email: n_zaretskaya@inbox.ru
Moscow, Russia; Moscow, Russia

A. V Orlov

Herzen State Pedagogical University

Email: n_zaretskaya@inbox.ru
St. Petersburg, Russia

A. V Pronina

Herzen State Pedagogical University

Author for correspondence.
Email: n_zaretskaya@inbox.ru
St. Petersburg, Russia

References

  1. Борисова О.К. (2021) Ландшафтно-климатические условия в центральной части Восточно-Европейской равнины в последние 22 тысячи лет (реконструкция по палеоботаническим данным). Водные ресурсы. Т. 48. № 6. С. 664–675. https://doi.org/10.31857/s0321059621060031 (In Russian).
  2. Borisova O.K. (2021) Landscape and climatic conditions in the central East European Plain in the last 22 thousand years: Reconstruction based on paleobotanical data. Water Resources. No. 6. P. 886–896. https://doi.org/10.1134/S0097807821060038
  3. Vashkov A.A., Nosova O. Yu. (2021) Ice-marginal deposits near the Umba Town (the south-west of the Kola Peninsula). Geomorfologiya. No. 2. P. 39–51 (in Russ). https://doi.org/10.31857/S0435428121020103
  4. Vostrukhina T.M. (1962) To the question of dating of glaciolacustrine deposits of the Onega Peninsula. Doklady AN SSSR. No. 1. P. 151–153 (in Russ).
  5. Demidov I.N., Larsen E., Kjaer K.H., Houmark-Nielsen M. (2007) The Upper Pleistocene stratigraphy of the southern part of the White Sea catchment area. Regional'naya geologiya i metallogeniya. No. 30–31. P. 179–189 (in Russ).
  6. Dzhinoridze R.N., Kirienko E.A., Kalugina L.V. et al. (1979) Stratigraphy of Upper Quaternary sediments of the northern part of the White Sea. In: Pozdnechetvertichnaya istoriya i sedimentogenez okrainnykh i vnutrennikh morei. Moscow: Nauka (Publ.). P. 34–39 (in Russ).
  7. Zaretskaya N.E., Baranov D.V., Ruchkin M.S., Lugovoy N.N. (2022) The Southeastern White Sea Coast in the Late Pleistocene. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. No. 6. P. 898–913 (in Russ). https://doi.org/10.31857/S2587556622060164
  8. Kolka V.V., Korsakova O.P. (2017) The position of the White Sea coastline and neotectonic movements of the north-east of Fennoscandia in the Late Glacial and Holocene. In: Sistema Belogo morya. Tom IV. Protsessy osadkoobrazovaniya, geologiya i istoriya. Moscow: Nauchnyi mir (Publ.). P. 222–249 (in Russ).
  9. Korsakova O.P. (2022) The White Sea Coasts within the Fennoscandian Crystal Shield in the Pleistocene and Holocene. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya. No. 6. С. 883–897 (in Russ). https://doi.org/10.31857/S258755662206005X
  10. Koshechkin B.I. (1979) Golotsenovaya tektonika vostochnoi chasti Baltiiskogo shchita (Holocene tectonics of the eastern part of the Baltic Shield). Leningrad: Nauka (Publ.). 158 p (in Russ).
  11. Морские и озерные бассейны восточной периферии Балтийского щита в четвертичное время: Материалы Всероссийской конференции и полевого симпозиума (г. Апатиты, 10–15 сентября, 2024) [Электронный ресурс]. URL: https://www.ksc.ru/conf/kola2024/include/files/32_konf_korsakova_2024_v3.pdf (дата обращения: 30.07.2025) (In Russian).
  12. Morskie i ozernye basseiny vostochnoi periferii Baltiiskogo shchita v chetvertichnoe vremya: Materialy Vserossiiskoi konferentsii i polevogo simpoziuma (g. Apatity, 10–15 sen­tyabrya, 2024) (Marine and lake basins of the eastern periphery of the Baltic Shield in the Quaternary: Proceedings of the All-Russian Conference and Field Symposium (Apatity, September 10–15, 2024)) [Electronic data]. URL: https://www.ksc.ru/conf/kola2024/include/files/32_konf_korsakova_2024_v3.pdf (access date: 30.07.2025).
  13. Naumov A.D. (2006) Dvustvorchatye mollyuski Belogo morya (Bivalves of the White Sea). Sankt-Petersburg: Zoologicheskii institut RAN (Publ.). 367 p (in Russ).
  14. Nevessky E.N., Medvedev V.S., Kalinenko V.V. (1977) Beloe more. Sedimentogenez i istoriya razvitiya v golotsene (The White Sea. Sedimentogenesis and history of deve­lopment in the Holocene). Moscow: Nauka (Publ.). 240 p. (in Russ)
  15. Rybalko A.E., Zhuravlev V.A., Semenova L.R., Tokarev M.Y. (2017) Quaternary sediments of the White Sea and the history of development of the modern White Sea basin in the late Pleistocene-Holocene. In: Sistema Belogo morya. T. IV. Protsessy osadkoobrazovaniya, geologiya i istoriya. Moscow: Nauchnyi Mir (Publ.). P. 16–84 (in Russ).
  16. Starovoitov A.V. (2023) Interpretatsiya georadiolokatsionnykh dannykh: uchebnoe posobie po kursu “Georadiolokatsiya” (Interpretation of ground penetrating radar data: a tutorial for the course “Ground penetrating radar”). Moscow: KDU; Dobrosvet (Publ.). 258 p (in Russ).
  17. Timireva S.N., Filimonova L.V., Zyuganova I.S. et al. (2022) Environmental changes in the Tersky Coast of White Sea (Kola Peninsula) during the Holocene inferred from multy-proxy study of the Kuzomen Moch peatland. Geomorfologiya. No. 3. P. 39–50 (in Russ). https://doi.org/10.31857/S0435428122030178
  18. Шилова О.С., Зарецкая Н.Е., Репкина Т.Ю. (2019) Голоценовые отложения Юго-Восточного побережья Горла Белого моря: новые данные диатомового и радиоуглеродного анализов. Доклады Академии наук. № 6. С 661–666. https://doi.org/10.31857/S0869-56524886661-666 (In Russian).
  19. Shilova O.S., Zaretskaya N.E., Repkina T. Yu. (2019) Holocene deposits of the southeastern coast of the Gorlo Strait (White Sea): New data of diatom and radiocarbon analyses. Dokl. Earth Sci. Vol. 488. No. 2. P. 1259–1263. https://doi.org/10.1134/S1028334X19100258
  20. Arslanov Kh.A., Yanina T.A., Chepalyga A.L. et al. (2016) On the age of the Khvalynian deposits of the Caspian Sea coasts according to 14C and 230Th/234U methods. Quat. Int. Vol. 409. Part A. P. 81–87. https://doi.org/10.1016/j.quaint.2015.05.067
  21. Astakhov V., Shkatova V., Zastrozhnov A., Chuyko M. (2016) Glaciomorphological Map of the Russian Federation. Quat. Int. Vol. 420. P. 4–14. https://doi.org/10.1016/j.quaint.2015.09.024
  22. Baranskaya A.V, Khan N., Romanenko F.A. et al. (2018) A postglacial relative sea-level database for the Russian Arctic coast. Quat. Sci. Rev. Vol. 199. P. 188–205. https://doi.org/10.1016/j.quascirev.2018.07.033
  23. Boyes B.M., Linch L.D., Pearce D.M. et al. (2021) The Kola Peninsula and Russian Lapland: A review of Late Weichselian glaciation. Quat. Sci. Rev. Vol. 267. P. 1–29 https://doi.org/10.1016/j.quascirev.2021.107087
  24. Creel R.C., Austermann J., Khan N.S. et al. (2022) Post­glacial relative sea level change in Norway. Quat. Sci. Rev. Vol. 282. 107422. https://doi.org/10.1016/j.quascirev.2022.107422
  25. Ekman I., Iljin V. (1995) Deglaciation, the Young Dryas end moraines and their correlation in Russian Karelia and adjacent areas. In: Glacial deposits in North-east Europe. Rotterdam: Balkama. P. 195–209.
  26. Hättestrand C., Kolka V.V., Stroeven A.P. (2007) The Keiva ice marginal zone on the Kola Peninsula, northwest Russia: A key component for reconstructing the palaeoglaciology of the northeastern Fennoscandian Ice Sheet. Boreas. Vol. 36. Iss. 4. P. 352–370. https://doi.org/10.1080/03009480701317488
  27. Ilyashuk E.A., Ilyashuk B.P., Hammarlund D. et al. (2005) Holocene climatic and environmental changes inferred from midge records (Diptera: Chironomidae, Chaoboridae, Ceratopogonidae) at Lake Berkut, southern Kola Peninsula, Russia. The Holocene. Vol. 15. Iss. 6. P. 897–914. https://doi.org/10.1191/0959683605hl865ra
  28. Korsakova O., Vashkov A., Nosova O. (2023a) Chapter 12 — European Russia: glacial landforms during deglaciation. In: European Glacial Landscapes. The Last Deglaciation. Amsterdam, Oxford, Cambridge: Elsevier P. 105–110. https://doi.org/10.1016/B978-0-323-91899-2.00025-5
  29. Korsakova O., Vashkov A., Nosova O. (2023b) Chapter 31 — European Russia: glacial landforms from the Bølling-Allerød Interstadial. In: European Glacial Landscapes. The Last Deglaciation. Amsterdam, Oxford, Cambridge: Elsevier. P. 305–310. https://doi.org/10.1016/b978-0-323-91899-2.00020-6
  30. Korsakova O., Vashkov A., Nosova O. (2023c) Chapter 49 — The European glacial landforms from the Younger Dryas Stadial (12.9–11.7 ka). In: European Glacial Landscapes. The Last Deglaciation. Amsterdam, Oxford, Cambridge: Elsevier. P. 467–472. https://doi.org/10.1016/B978-0-323-91899-2.00014-0
  31. Kremenetski C.V., Patyk-Kara N.G. (1997). Holocene vegetation dynamics of the southeast Kola Peninsula, Russia. The Holocene. Vol. 7. Iss. 4. P. 473–479. https://doi.org/10.1177/095968369700700409
  32. Lunkka J.P., Kaparulina E., Putkinen N. et al. (2018). Late Pleistocene palaeoenvironments and the last deglaciation on the Kola Peninsula, Russia. Arktos. Vol. 4. P. 2–18. https://doi.org/10.1007/s41063-018-0053-z
  33. Neal J., Hawker L. (2023). FABDEM V1–2. https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn
  34. Reimer P.J., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon. Vol. 62. P. 725–757. http://dx.doi.org/10.1017/RDC.2020.41
  35. Repkina T.Y., Zaretskaya N.E., Shvarev S.V. et al. (2023). Morphodynamics and Morphotectonics of the Mouth Area of the Varzuga River in the Late Glacial and Holocene (Terskii Coast of the White Sea). Dokl. Earth Sci. Vol. 513. Iss. 1 supplement. P. s24–s46. http://dx.doi.org/10.1134/S1028334X2360250X
  36. Zaretskaya N., Utkina A., Baranov D. et al. (2024). Limited extension of the MIS 2 proglacial lake in the Severnaya Dvina valley, south-eastern margin of the last Scan­dinavian Ice Sheet. J. of Quat. Sci. Vol. 39. Iss. 1. P. 82–101. https://doi.org/10.1002/jqs.3570
  37. Zazovskaya E., Shishkov V., Dolgikh A. et al. (2017) Organic matter of cultural layers as a material for radiocarbon dating. Radiocarbon. Vol. 59. Iss. 6. P. 1931–1944. https://doi.org/10.1017/RDC.2017.134

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences