Soil Organic Carbon Stocks under No-Tillage in the Middle Volga Region

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The introduction of resource-saving technologies into the practice of agriculture is one of the approaches to preserving soil fertility and increasing the reserves of organic carbon (Сorg). One of such technologies is zero tillage, which has been actively used all over the world since the middle of the twentieth century. However, there is still insufficient information about the effectiveness of this technology for the accumulation and preservation of Сorg in the agro-soils of our country. The paper estimates the rate of accumulation of Сorg by agrochernozems with zero tillage in the conditions of the Middle Volga region. On the territory of agricultural farms (Pokhvistnevsky district of the Samara region), 2 agricultural fields with 5- and 8-year zero tillage (88 and 161 hа, respectively) and a field with non-fallow plowing (42 hа) were selected. 30 study points were selected in each field, from which soil samples of the upper (0–10 cm) and lower (10–30 cm) layers of humus-accumulative and partially illuvial horizons were selected. The paper presents the main physic-chemical parameters of the soil and calculated the reserves of Сorg. A significant increase in sorghum reserves in the upper soil layer was shown at 5- and 8-year zero tillage (on average by 0.57 and 0.45 kg/m2) compared with those during plowing, but no significant differences were found for the lower layer. The total sorghum reserves for the 0–30 cm soil layer at zero tillage increased by 0.61 and 0.34 kg/m2 relative to those during plowing. Consequently, as a result of the application of zero processing, the rate of accumulation of Сorg reserves in the agrochernozems of the Middle Volga region can reach 1.22 and 0.43 t/ha per year, which is 1.3–41 times more than the recommended program “4 ppm” for agricultural lands of our country (from 0.03 to 0.33 t/ha per year).

Sobre autores

K. Ivashchenko

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ivashchenko.kv@gmail.com
Russia, 142290, Moscow region, Pushchino, ul. Institutskaya 2

S. Sushko

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences; Agrophysical Research Institute

Email: ivashchenko.kv@gmail.com
Russia, 142290, Moscow region, Pushchino, ul. Institutskaya 2; Russia, 195220, St. Petersburg, Grazhdansky prosp. 14

Yu. Dvornikov

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences; Peoples' Friendship University of Russia

Email: ivashchenko.kv@gmail.com
Russia, 142290, Moscow region, Pushchino, ul. Institutskaya 2; Russia, 117198, Moscow, ul. Miklukho-Maklaya 6

L. Mirny

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: ivashchenko.kv@gmail.com
Russia, 142290, Moscow region, Pushchino, ul. Institutskaya 2

L. Orlova

LLC “Orlovka–AIC”; National movement of conservation agriculture

Email: ivashchenko.kv@gmail.com
Russia, 446472, Samara region, @city, ul. Central’naya 42e; Russia, 443099, Samara, ul. Kuibysheva 88

N. Ananyeva

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: ivashchenko.kv@gmail.com
Russia, 142290, Moscow region, Pushchino, ul. Institutskaya 2

S. Neprimerova

Peoples' Friendship University of Russia

Email: ivashchenko.kv@gmail.com
Russia, 117198, Moscow, ul. Miklukho-Maklaya 6

A. Yudina

V.V. Dokuchaev Soil Institute

Email: ivashchenko.kv@gmail.com
Russia, 119017, Moscow, Pyzhevsky per. 7, bld. 2

N. Trots

Samara State Agrarian University

Email: ivashchenko.kv@gmail.com
Russia, 446442, Samara region, Kinel, ul. Uchebnaya 2

Bibliografia

  1. Кудеяров В.Н., Демкин В.Ф., Гиличинский Д.А., Горячкин С.В., Рожков В.А. Глобальные изменения климата и почвенный покров // Почвоведение. 2009. № 9. С. 1027–1042.
  2. Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.-S., Cheng K., Das B.S., Field D.J., Gimona A., Hedley C.B., Hong S.Y., Mandal B., Marchant B.P., Martin M., McConkey B.G., Mulder V.L., O’Rourke S., Richer-de-Forges A.C., Odeh I., Padarian J., Paustian K., Pan G., Poggio L., Savin I., Stolbovoy V., Stockmann U., Sulaeman Y., Tsui C.-C., Vågen T.-G., van Wesemael B., Winowiecki L. Soil carbon 4 per mille // Geoderma. 2017. V. 292. P. 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
  3. Arrouays D., Balesdent J., Germon J.C., Jayet P.A., Soussana J.F., Stengel P. Increasing carbon stocks in French agricultural soils? Synthesis of an Assessment Report by the French Institute for Agricultural Research on Request of the French Ministry for Ecology and Sustainable Development // Sci. Assess. Paris: Unit for Expertise, INRA, 2002. 36 p.
  4. Johnson J.M.F., Reicosky D.C., Allmaras R.R., Saue, T.J., Venterea R.T., Dell C.J. Greenhouse gas contributions and mitigation potential of agriculture in the central USA // Soil Till. Res. 2005. V. 83. P. 73–94.
  5. Lu F., Wang X., Han B., Ouyang Z., Duan X., Zheng H.U.A., Miao H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no–tillage in China’s cropland // Glob. Chang. Biol. 2009. V. 15. P. 281–305.
  6. Powlson D.S., Bhogal A., Chambers B.J., Coleman K., Macdonald A.J., Goulding K.W.T., Whitmore A.P. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study // Agric. Ecosyst. Environ. 2012. V. 146. P. 23–33.
  7. Национальный атлас почв Российской Федерации: М.: Астель, 2011. 632 с.
  8. Турин Е.Н. Преимущества и недостатки системы земледелия прямого посева в мире (обзор) // Таврич. вестн. аграрн. науки. 2020. № 2(22). С. 150–168.
  9. Когут Б.М, Семенов В.М., Артемьева З.С., Данченко Н.Н. Дегумусирование и почвенная секвестрация углерода // Агрохимия. 2021. № 5. С. 3–13.
  10. Столбовой В.С., Савин И.Ю. Могут ли почвы России влиять на изменение климата? // Природн.-ресурс. ведомости. 2018. № 9 (456). С. 5.
  11. Stolbovoi V. Carbon in Russian soils // Climate Change. 2002. V. 55. P. 131–156.
  12. Minasny B., McBratney A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information // Comput. Geosci. 2006. V. 32. № 9. P. 1378–1388.
  13. Воробьева Л.А. Химический анализ почвы. М.: Изд-во МГУ, 1998. 272 с.
  14. Юдина А.В., Фомин Д.С., Валдес-Коровкин И.А., Чурилин Н.А., Александрова М.С., Головлева Ю.А., Филиппов Н.В., Ковда И.В., Дымов А.А., Милановский Е.Ю. Пути создания классификации почв по гранулометрическому составу на основе метода лазерной дифракции // Почвоведение. 2020. № 11. С. 1353–1371.
  15. Elith J., Leathwick J. R., Hastie T. A working guide to boosted regression trees // J. Anim. Ecol. 2008. № 77. C. 802–813.
  16. Флоринский И.В. Иллюстрированное введение в геоморфометрию [Электр. ресурс] // Электронное научное издание Альманах “Пространство и время”. 2016. Т. 11. Вып. 1: Система планета Земля. Стационар. Сетев. адрес: 2227-9490e-aprovr_e-ast11-1.2016.71
  17. Турин Е.Н., Женченко К.Г., Гонгало А.А. Выращивание сорго зернового без обработки почвы в сравнении с традиционной технологией в центральной степи Крыма // Агрономия. 2019. № 17 (180). С. 75–85.
  18. Blanco-Canqui H., Ruis S.J. No-tillage and soil physical environment // Geoderma. 2018. V. 326. P. 164–200.
  19. Guan D., Al-Kaisi M.M., Zhang Y., Duan L., Tan W., Zhang M., Li Z. Tillage practices affect biomass and grain yield through regulating root growth, rootbleeding sap and nutrients uptake in summer maize // Field Crop Res. 2014. V. 157. P. 89–97.
  20. Fan R.Q., Yang X.M., Drury C.F., Reynolds W.D., Zhang X.P. Spatial distributions of soil chemical and physical properties prior to planting soybean in soil under ridge-, no-, and conventional-tillage in a maize–soybean rotation // Soil Use Manag. 2014. V. 30. P. 414–422.
  21. USDA-NRCS, 1996. Soil quality resource concerns: compaction. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5294092.pdf
  22. Бондарев А.Г., Медведев В.В. Некоторые пути определения оптимальных параметров агрофизических свойств почв // Теоретические основы и методы определения оптимальных параметров свойств почв. Тр. Почв. ин-та им. В.В. Докучаева. М.: Наука, 1980. С. 85–98.
  23. Захаров Н. Карбоновые рынки в России, в том числе аграрный. Углеродные кредиты // Ресурсосбер. земледелие. Спец. сел.-хоз. журн. 2022. № 56(04). С. 31.
  24. Постановление Правительства Российской Федерации от 30.04.2022 г. № 790. http://government.ru/docs/all/140827/ Дата обращ. 13.07.2023.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (2MB)
4.

Baixar (624KB)
5.

Baixar (182KB)
6.

Baixar (115KB)
7.

Baixar (829KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2023