Influence of Soil Pollution by Lead on Plants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The issues related to the problem of soil contamination with lead and the effect of this pollution on plants are considered. It is shown that the widespread use of this metal in the economy causes the spread of soil contamination with lead and a possible potential increase in the degree of environmental pollution in the foreseeable future. The forms of lead in the soil and the factors affecting its bioavailability for plants are described. The mechanisms of penetration of metal ions into plants, their effect on the formation of seedlings, adult plants, as well as physiological and biochemical processes in plants are considered.

Full Text

Restricted Access

About the authors

V. V. Ivanishchev

Lev Tolstoy Tula State Pedagogical University

Author for correspondence.
Email: avdey_vv@mail.ru
Russian Federation, prosp. Lenina 125, Tula 300026

T. E. Sigolaeva

Lev Tolstoy Tula State Pedagogical University

Email: avdey_vv@mail.ru
Russian Federation, prosp. Lenina 125, Tula 300026

L. V. Perelomov

Lev Tolstoy Tula State Pedagogical University

Email: avdey_vv@mail.ru
Russian Federation, prosp. Lenina 125, Tula 300026

References

  1. Nas F.S., Ali M. The effect of lead on plants in terms of growing and biochemical parameters // MOJ Eco. Environ. Sci. 2018. V. 3. № 4. P. 265–268. doi: 10.15406/mojes.2018.03.00098
  2. Гарифзянов А.Р., Жуков Н.Н., Иванищев В.В. Образование и физиологические реакции активных форм кислорода в клетках растений // Совр. пробл. науки и образов-я. 2011. № 2. 21 с. URL: www.science-education.ru/96-4600 (дата обращения: 02.09.2023).
  3. Collin S., Baskar A., Geevarghese D.M., Ali M.N.V.S., Bahubali P., Choudhary R., Lvov V., Tovar G.I., Senatov F., Koppala S., Swamiappan S. Bioaccumulation of lead (Pb) and its effects in plants // J. Hazard. Mater. Lett. 2022. V. 3. 100064. https://doi.org/10.1016/j.hazl.2022.100064. https://www.sciencedirect.com/science/article/pii/S266691102200017X
  4. Aslam M., Aslam A., Sheraz M., Ali B., Ulhassan Z., Najeeb U., Zhou W., Gill R.A. Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management // Front. Plant Sci. 2021. V. 11. 587785. doi: 10.3389/fpls.2020.587785
  5. Al-Ghzawi A.L.A., Al Khateeb W., Rjoub A., Al-Tawaha A.R.M., Musallam I., Al Sane K.O. Lead toxicity affects growth and biochemical content in various genotypes of barley (Hordeum vulgare L.) // Bulgar. J. Agricult. Sci. 2019. V. 25. № 1. P. 55–61.
  6. Kumar A., Mms C.P., Chaturvedi A.K., Shabnam A.A., Subrahmanyam G., Mondal R., Yadav K.K. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches // Inter. J. Environ. Res. Public Health. 2020. V. 17. № 7. 2179. https://doi.org/10.3390/ijerph17072179
  7. Obeng-Gyasi E. Sources of lead exposure in various countries // Rev. Environ. Health. 2019. V. 34. № 1. P. 25–34. https://doi.org/10.1515/reveh-2018-0037
  8. Xing W., Yang H., Ippolito J.A., Zhang Y., Sche- ckel K.G., Li L. Lead source and bioaccessibility in windows illdusts within a Pb smelting-affected area // Environ. Pollut. 2020. V. 266. P. 2. 115110. https://doi.org/10.1016/j.envpol.2020.115110
  9. Zou C., Zhang L., Hu X., Wang Z., Wik T., Pecht M. A review of fractional order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors // J. Power Sources. 2018. V. 390. P. 286–296. https://doi.org/10.1016/j. jpowsour.2018.04.033
  10. Pourrut B., Shahid M., Dumat C., Winterton P., Pinelli E. Lead uptake, toxicity, and detoxification in plants // Rev. Environ. Contam. Toxicol. 2011. V. 213. P. 113–136. doi: 10.1007/978-1-4419-9860-6_4
  11. Перечень предельно допустимых концентраций (ПДК) и ориентировочно допустимых количеств (ОДК) химических веществ в почве (утв. Главн. Гос. сан. врачом СССР 19 ноября 1991 г. № 6229–91) (с изменениями и дополнениями). https://base.garant.ru/372205/d866c9989c75bef029b67e7a33698205/
  12. Ежегодник. Загрязнение почв Российской Федерации токсикантами промышленного происхождения в 2022 году. Обнинск: НПО “Тайфун”, 2023. 139 с. URL: https://www.rpatyphoon.ru/upload/medialibrary/ezhegodniki/tpp/tpp_2022.pdf
  13. Переломов Л.В., Пинский Д.Л. Формы Mn, Pb и Zn в серых лесных почвах Среднерусской возвышенности // Почвоведение. 2003. № 6. С. 682–691.
  14. Медведев А.В. Содержание тяжелых металлов в почвах Тульской области // Кадастр недвижимости и мониторинг природных ресурсов: Международ. научн.-техн. интернет-конф. Тула, 2011. URL: http://kadastr.org/conf/2011/pub/monitprir/sod-tyaj-met-pochv.html
  15. Perelomov L., Atroshchenko Y., Pinsky D., Minkina T., Perelomova I. Trace elements in fluvisols with different anthropogenic load // Inter. J. Environ. Res. 2021. V. 15. № 4. С. 751–758. doi: 10.1007/s41742-021-00353-x
  16. Арляпов В.А., Волкова Е.М., Нечаква И.А., Скворцова Л.С. Содержание тяжелых металлов в почве как индикатор антропогенного загрязнения Тульской области // Изв. Тул. Гос. ун-та. Естеств. науки. 2015. № 4. С. 194–204.
  17. An Y.J. Assessment of comparative toxicities of lead and copper using plant assay // Chemosphere. 2006. V. 62. № 81. P. 1359–1365.
  18. Cheyns K., Peeters S., Delcourt D., Smolders E. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency // Environ. Pollut. 2012. V. 164. P. 242–247.
  19. Kushwaha A., Hans N., Kumar S., Rani R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies // Ecotoxicol. Environ. Saf. 2018. V. 147. P. 1035–1045. doi: 10.1016/j.ecoenv.2017.09.049
  20. Lovering T.G. The distribution of minor elements in samples of biotite from igneous rocks – basic data // Open-File Rep. 1969. P. 69–152. https://doi.org/10.3133/ofr69152
  21. Добровольский В.В. География микроэлементов. Глобальное рассеяние. М.: Мысль, 1983. 272 с.
  22. Shiowatana J., McLaren R.G., Chanmekha N., Samphao A. Fractionation of arsenic in soil by a continuous-flow sequential extraction method // J. Environ. Qual. 2001. V. 30. № 6. P. 1940. doi: 10.2134/jeq2001.1940
  23. Wuana R.A., Okieimen F.E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation // ISRN Ecol. 2011. P. 1–20. doi: 10.5402/2011/402647
  24. Мотузова Г.В. Соединения микроэлементов в почвах: системная организация, экологическое значение, мониторинг. М.: Эдиториал УРСС, 1999. 168 с.
  25. Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals // Analyt. Chemi. V. 51. № 7. P. 844–851.
  26. Zeien H., Brummer G.W. Ermittlung der mobilitaet und bindungsformen von schwermetallen in boeden mittels sequentieller extraktionen // Mitt. Dtsch. Bodenkundi Gesellsch. 1991. V. 66. № 1. S. 439–442.
  27. Ure A.M., Quevauviller P., Muntau H., Griepink B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BSR (Community Bureau of Reference) of the commission of European communities // Inter. J. Environ. Anal. Chem. 1993. V. 51. P. 135–151.
  28. Fahr M., Laplaze L., Bendaou N., Hocher V., Mzibri M.E., Bogusz D., Smouni A. Effect of lead on root growth // Front. Plant Sci. 2013. V. 4. P. 175–182. doi: 10.3389/fpls.2013.00175
  29. Zhang L., Van Gestel C.A.M. Effect of percolation and chemical form on Pb bioavailability and toxicity to the soil invertebrate Enchytraeus crypticus in freshly spiked and aged soils // Environ. Pollut. 2019. V. 247. P. 866–873.
  30. Li J., Cao H.L., Jiao W.B., Wang Q., Wei M., Cantone I., Abate A. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold // Nat. Commun. 2020. V. 11. 310. https://doi.org/10.1038/s41467-019-13910-y
  31. Sharma P., Dubey R.S. Lead toxicity in plants // Braz. J. Plant Physiol. 2005. V. 17. № 1. P. 35–52.
  32. Lane S.D., Martin E.S. A histochemical investigation of lead uptake in Raphanus sativus // New Phytol. 1977. V. 79. № 2. P. 281–286. https://doi.org/10.1111/j.1469-8137.1977.tb02206.x
  33. Zhou J., Zhang Z., Zhang Y., Wei Y., Jiang Z. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings // PLOS ONE. 2018. V. 13. № 3. https://doi.org/10.1371/journal.pone.0191139
  34. Seregin I.V., Ivanov V.B. Physiological aspects of cadmium and lead toxic effects on higher plants // Russ. J. Plant Physiol. 2001. V. 48. № 4. P. 523–544.
  35. Hussain A., Abbas N., Arshad F., Akram M., Khan Z.I., Ahmad K., Mansha M., Mirzaei F. Effects of diverse doses of Lead (Pb) on different growth attributes of Zea mays L. // Agricult. Sci. 2013. V. 4. № 5. P. 262– 265. http://dx.doi.org/10.4236/as.2013.45037
  36. Osman H.E., Fadhlallah R.S. Impact of lead on seed germination, seedling growth, chemical composition, and forage quality of diferent varieties of Sorghum // J. Umm Al-Qura Univ. Appll. Sci. 2023. V. 9. P. 77–86. https://doi.org/10.1007/s43994-022-00022-5
  37. Mohanty N., Vass I., Demeter S. Copper toxicity affects Photosystem II electron transport at the secondary quinone acceptor. QB // Plant Physiol. 1989. V. 90. № 1. P. 175–179.
  38. Miles C.D., Brandle J.R., Daniel D.J. Inhibition of PS II in isolated chloroplasts by lead // Plant Physiol. 1972. V. 49. № 5. P. 820–825.
  39. Hampp R., Ziegler H., Ziegler I. Influence of lead ions on the activity of enzymes of reductive pentose phosphate pathway // Biochem. Physiol. Pflanzen. 1973. V. 164. № 5–6. P. 588–595.
  40. Tushu I., Brouillette J.N. Metal ion inhibition of corn root plasmamembrane ATPase // Phytochemistry. 1987. V. 26. № 1. P. 65–69.
  41. Reese R.N., Roberts L.W. Effects of cadmium on whole cell and mitochondrial respiration in tobacco cell suspension cultures (Nicotiana tobacum L. var. xanthi) // J. Plant Physiol. 1985. V. 120. № 2. P. 123–130.
  42. Miller R.J., Biuell J.E., Koeppe D.E. The effect of cadmium on electron and energy transfer reactions in corn mitochondria // Physiol. Plant. 1973. V. 28. № 1. P. 166–171.
  43. Parys E., Romanowaska E., Siedlecka M., Poskuta J. The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum // Acta Physiol. Plant. 1998. V. 20. P. 313–322. doi: 10.1007/s11738-998-0064-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 The Russian Academy of Sciences