Experimental and theoretical evaluation of fungicidal and bactericidal activity of 3-alkyl substituted 1H-phospholane oxides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The fungicidal and bacterial activity of the model compound 3-hexyl-1H-phospholan oxide was tested using fungi of the genus Septoria sp., Phytophthora sp., Puccinia sp., and Aspergillus sp., as well as Escherichia coli bacteria. A comprehensive analysis of the experimental data obtained and docking on selected targets of key proteins of each test object made it possible to evaluate the potential pesticidal activity of the phospholane oxide class.

Texto integral

Acesso é fechado

Sobre autores

T. Tyumkina

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ttvnmr@gmail.com
Rússia, prosp. Oktyabrya 141, Ufa 450075

K. Bulatova

Ufa State Petroleum Technical University

Email: ttvnmr@gmail.com
Rússia, ul. Kosmonavtov 1, Ufa 450062

D. Islamov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences

Email: ttvnmr@gmail.com
Rússia, prosp. Oktyabrya 141, Ufa 450075

A. Makhamatkhanova

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences

Email: ttvnmr@gmail.com
Rússia, prosp. Oktyabrya 141, Ufa 450075

M. Mallyabaeva

Ufa State Petroleum Technical University

Email: ttvnmr@gmail.com
Rússia, ul. Kosmonavtov 1, Ufa 450062

D. Sabirov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences

Email: ttvnmr@gmail.com
Rússia, prosp. Oktyabrya 141, Ufa 450075

Bibliografia

  1. Химическая защита растений / Под ред. Г.С. Груздева. М.: Агропромиздат, 1987. 415 c.
  2. Дьяконов В.А., Махаматханова А.Л., Тюмкина Т.В., Джемилев У.М. Синтез и превращения металлациклов. Сообщ. 41. Реакция каталитического циклоалюминирования в синтезе 3-замещенных фосфоланов // Изв. АН. Сер. хим. 2012. № 8. C. 1540–1543.
  3. D’yakonov V.A., Makhamatkhanova A.L., Agliullina R.A., Dilmukhametova L.K., Tyumkina T.V., Dzhemilev U.M. Aluminacyclopentanes in the synthesis of 3-substituted- and α, ω-bis-phospholanes // Beilshtein J. Org. Chem. 2016. V. 12. P. 406–412.
  4. Nemoto T. Hamada Y. Pd-catalyzed asymmetric allylic substitution reactions using P-chirogenic diaminophosphine oxides: DIAPHOXs // Chem. Rec. 2007. V. 7. P. 150–158.
  5. Finkbeiner P., Hehn J.P., Gnamm C. Phosphine oxides from a medicinal chemist’s perspective: Physicochemical and in vitro parameters relevant for drug discovery // J. Med. Chem. 2020. V. 63. P. 7081–7107.
  6. Чекмарев В.В. Способ определения фунгицидной активности химических веществ препаратов: Пат. 2546285, РФ // Офиц. Бюл. «Изобретения. Полезные модели». 2015. № 10.
  7. МУК 4.2.1890-04. 4.3. Диско-диффузионный метод (ДДМ). Определение чувствительности микроорганизмов к антибактериальным препаратам. М.: Роспотребнадзор, 2004. С. 18–21.
  8. МУК 4.2.1890-04. 4.2. Методы серийных разведений. Определение чувствительности микроорганизмов к антибактериальным препаратам. М.: Роспотребнадзор, 2004. С. 10–18.
  9. Wang X., Shen Y., Wang S., Li S., Zhang W., Liu X., Lai L., Pei J., Li H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database // Nucleic Acids Res. 2017. V. 45. № W1. P. W356–W360.
  10. Antypenko L., Meyer F., Sadyk Z., Shabelnyk K., Kovalenko S., Steffens K.G., Garbe L.-A. Combined application of tacrolimus with cyproconazole, hymexazol and novel {2-(3-R-1H-1,2,4-triazol-5-yl)phenyl}amines as antifungals: In Vitro growth inhibition and In Silico molecular docking analysis to fungal chitin deacetylase // J. Fungi. 2023. V. 9. № 1. P. 79.
  11. Labib Mai M., Amin M.K., Alzohairy A.M., Elashtokhy M.M.A., Samir O., Hassanein S.E. Inhibition analysis of aflatoxin by in silico targeting the thioesterase domain of polyketide synthase enzyme in Aspergillus ssp. // J. Biomol. Struct. Dyn. 2022. V. 40. № 10. P. 4328–4340.
  12. Boissy G., O’Donohue M., Gaudemer O., Perez V., Pernollet J.-C., Brunie S. The 2.1 Å structure of an elicitin-ergosterol complex: A recent addition to the Sterol Carrier Protein family // Protein Sci. 1999. V. 8. № 6. P. 1191–1199.
  13. Yoneda K., Nagano R., Mikami T., Sakuraba H., Fukui K., Araki T., Ohshima T. Catalytic properties and crystal structure of UDP-galactose 4-epimerase-like l-threonine 3-dehydrogenase from Phytophthora infestans // Enzyme Microb. Technol. 2020. V. 140. P. 109627.
  14. Crowley P.J. Use as agrochemicals // Comprehensive Heterocyclic Chemistry. Oxford: Pergamon, 1984. P. 185–199.
  15. Yotsuji A., Mitsuyama J., Hori R., Yasuda T., Saikawa I., Inoue M., Mitsuhashi S. Mechanism of action of cephalosporins and resistance caused by decreased affinity for penicillin-binding proteins in Bacteroides fragilis // Antimicrob. Agents Chemother. 1988. V. 32. № 12. P. 1848–1853.
  16. Truesdell S.E., Zurenko G.E., Laborde A.L. Interaction of cephalosporins with penicillin-binding proteins of methicillin-resistant Staphylococcus aureus // J. Antimicrob. Chemother. 1989. V. 23. № suppl_D. P. 13–19.
  17. Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility // J. Comput. Chem. 2009. V. 30. № 16. P. 2785–2791.
  18. BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, v21.1.0.20298, San Diego: Dassault Systèmes. 2020.
  19. Berman H.M., Westbrook J., Feng Z., Gilli-land G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank // Nucleic Acids Res. 2000. V. 28. № 1. P. 235–242.
  20. Braun O., Knipp M., Chesnov S., Vašák M. Specific reactions of S-nitrosothiols with cysteine hydrolases: A comparative study between dimethylargininase-1 and CTP synthetase // Protein Sci. 2007. V. 16. № 8. P. 1522–1534.
  21. Tyumkina T.V., Islamov D.N., Parfenova L.V., Khalilov L.M., Dzhemilev U.M. Structure and conformations of 2-substituted and 3-substituted alumolanes in polar solvents: a direct NMR observation // Magn. Reson. Chem. 2016. V. 54. № 1. P. 62–74.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Рис. 2. Объекты исследования.

Baixar (174KB)
3. Fig. 2. Objects of research.

Baixar (36KB)
4. 3. Diastereomers of 3-alkyl-1H-phospholan oxides.

Baixar (90KB)
5. Fig. 4. Interaction of SR-propiconazole and phospholan oxides RR-λ 1a, RR-λ 1b and RR-λ 1b with the active site of the CYP51B protein.Hydrophobic interactions are colored light pink, hydrogen bonds are colored green, π-σ interactions are colored purple, Van der Waals interactions are colored mint green, unfavorable interactions of positively charged centers are colored red, π-π interactions are colored pink.The blue color reflects the attraction between oppositely charged centers.

Baixar (327KB)
6. Fig. 5. Interaction of RS-propiconazole and phospholan oxides RR-λ 1a, SS-σ 1a, RR-λ 1b, SS-σ 1b, RR-λ 1b and SS-σ 1b with the active site of the L-ThrDH protein.Hydrophobic interactions are colored light pink, conventional hydrogen bonds are colored green, π-σ interactions are colored purple, Van der Waals interactions are colored mint green, π-anion interactions are colored orange, π-π interactions are colored pink, π-donor the hydrogen bond is colored red, hydrogen bonds involving a hydrogen atom covalently bonded to a carbon atom, they are painted blue.

Baixar (401KB)
7. Fig. 6. Interaction of SR-propiconazole, phospholan oxides RR-λ 1a, RR-λ 1b, SS-σ 1b and RR-λ 1b with the active site of the PBP protein 5. Hydrophobic interactions are colored light pink, hydrogen bonds are colored green, Van der Waals interactions are colored in mint green, favorable interactions of oppositely charged centers are colored orange, unfavorable interactions of positively charged centers are colored red, unfavorable interactions of acceptor centers are colored yellow.

Baixar (176KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024