Promising strains of phosphate-mobilizing rhizobacteria resistant to glyphosate and nickel
- Авторлар: Khakimova L.R.1,2, Chubukova O.V.1,3, Akimova E.S.1, Vershinina Z.R.1,3
-
Мекемелер:
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, RAS
- Ufa State Petroleum Technological University
- Ufa State Petroleum Technical University
- Шығарылым: № 12 (2024)
- Беттер: 81-88
- Бөлім: Experimental Articles. Ecotoxicology
- URL: https://gynecology.orscience.ru/0002-1881/article/view/647256
- DOI: https://doi.org/10.31857/S0002188124120116
- EDN: https://elibrary.ru/vuqita
- ID: 647256
Дәйексөз келтіру
Аннотация
A search was carried out for phosphate-soluble rhizobacteria capable of growing in the presence of different concentrations of the herbicide glyphosate and nickel heavy metal ions (Ni2+). Using the Muromtsev medium, the phosphate-mobilizing activity was determined only in 3 out of 20 strains of Rhizobium spp. – with a low solubilization index (IS). On the contrary, all strains of Pseudomonas sp. showed a positive result, and the highest IS was in Pseudomonas sp. OBA 2.4.1 and GOR 4.17. The highest growth activity under stressful conditions was shown by 4 strains of Pseudomonas spp.: OBA 2.4.1, OBA 2.9, 4.17 and STA 3, their growth was noticeably inhibited with an increase in the concentration of glyphosate in the medium to 10.0 mg/ml. The growth activity of Rhizobium spp. strains was characterized as average. When growing on a medium with NiCl2, Pseudomonas strains sp. 65 HM and 67 HM grew to a concentration of 9 mM NiCl2 in the medium, at a concentration of 11 mM, strain 67 HM gave growth in the form of single colonies. These strains were isolated from soil samples taken from sites contaminated with chemical effluents. It is possible that nickel chlorides were already present in such soil in high concentrations exceeding the norm, that is why these strains had such high resistance to nickel ions. Thus, Rhizobium sp. strains did not have the most active PGPR properties, but different strains of Pseudomonas sp. showed high resistance to glyphosate and nickel chloride. Thus, Pseudomonas sp. they demostrated their high ability to adapt to stressful conditions. It is such PGPR bacteria (Plant Growth Promoting Rhizo bacteria) that can be considered as biological agents to increase the efficiency of bioremediation of agricultural soils.
Негізгі сөздер
Толық мәтін

Авторлар туралы
L. Khakimova
Institute of Biochemistry and Genetics, Ufa Federal Research Center, RAS; Ufa State Petroleum Technological University
Хат алмасуға жауапты Автор.
Email: lili-nigmatullina@bk.ru
Ресей, prosp. Oktyabrya 71, Ufa 450054; ul. Kosmonavtov 1, Ufa 450062
O. Chubukova
Institute of Biochemistry and Genetics, Ufa Federal Research Center, RAS; Ufa State Petroleum Technical University
Email: lili-nigmatullina@bk.ru
Ресей, prosp. Oktyabrya 71, Ufa 450054; ul. Pervomaiskaya 14, Ufa 450044
E. Akimova
Institute of Biochemistry and Genetics, Ufa Federal Research Center, RAS
Email: lili-nigmatullina@bk.ru
Ресей, prosp. Oktyabrya 71, Ufa 450054
Z. Vershinina
Institute of Biochemistry and Genetics, Ufa Federal Research Center, RAS; Ufa State Petroleum Technical University
Email: lili-nigmatullina@bk.ru
Ресей, prosp. Oktyabrya 71, Ufa 450054; ul. Pervomaiskaya 14, Ufa 450044
Әдебиет тізімі
- Ali B., Wang X., Saleem M. H., Sumaira, Hafeez A., Afridi M.S., Khan S., Zaib-Un-Nisa, Ullah I., Amaral Júnior A.T. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes // Plants. 2022. V. 11. Р. 345. https://doi.org/10.3390/plants11030345
- Afridi M.S., Ali S., Salam A., César Terra W., Hafeez A., Sumaira, Ali B., S. AlTami M., Ameen F., Ercisli S., Marc R.A., Medeiros F.H.V., Karunakaran R. Plant microbiome engineering: Hopes or hypes // Biology. 2022. V. 11. Р. 1782. https://doi.org/10.3390/biology11121782
- Morris C.E., Lamichhane J.R., Nikolić I., Stanković S., Moury B. The overlapping continuum of host range among strains in the Pseudomonas syringae complex // Phytopathol. Res. 2019. V. 1. Р. 4. https://doi.org/10.1186/s42483-018-0010-6
- Motamedi M., Zahedi M., Karimmojeni H., Baldwin T.C., Motamedi H. Rhizosphere-associated bacteria as biofertilizers in herbicide-treated alfalfa (Medicago sativa) // J. Soil Sci. Plant Nutr. 2023. V. 23. Р. 2585–2598. https://doi.org/10.1007/s42729-023-01214-6
- Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R.K., Gowda C.L., Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities // Biotechnology. 2015. V. 5(4). Р. 355–377. https://doi.org/10.1007/s13205-014-0241-x
- Akbar S., Sultan S. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement // Brazil. J. Microbiol. 2016. V. 47. Р. 563–570. https://doi.org/10.1016/J.BJM.2016.04.009
- Bocker T., Mohring N., Finger R. Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production // Agric. Syst. 2019. V. 173. Р. 378–392. https://doi.org/10.1016/j.agsy.2019.03.001
- Tang F.H.M., Lenzen M., McBratney A., Maggi F. Risk of pesticide pollution at the global scale // Nat. Geosci. V. 2021. № 14. Р. 206–210. https://doi.org/10.1038/s41561-021-00712-5
- Maggi F., la Cecilia D., Tang F.H.M., McBratney A. The global environmental hazard of glyphosate use // Sci. Total. Environ. 2020. V. 717. P. 137167. https://doi.org/10.1016/j.scitotenv.2020.137167
- Wang L., Deng Q., Hu H., Liu M., Gong Z., Zhang S., Xu-Monette Z.Y., Lu Z., Young K.H., Ma X., Li Y. Glyphosate induces benign monoclonal gammopathy and promotes multiple myeloma progression in mice // J. Hematol. Oncol. 2019. V. 12. № 70. Р. 1–11. https://doi.org/10.1186/s13045-019-0767-9
- Zoller O., Rhyn P., RuppH., Zarn J. A., Geiser C. Glyphosate residues in Swiss market foods: monitoring and risk evaluation // Food Addit. Contam. Part B. 2018. V. 11. № 2. P. 83–91. https://doi.org/10.1080/19393210.2017.1419509
- Li J., Chen W. J., Zhang W., Zhang Y., Lei Q., Wu S., Huang Y., Mishra S., Bhatt P., Chen S. Effects of free or immobilized bacterium Stenotrophomonas acidaminiphila Y4B on glyphosate degradation performance and indigenous microbial community structure // J. Agric. Food Chem. 2022. V. 70. № 43. Р. 13945–13958. https://doi.org/10.1021/acs.jafc.2c05612
- Kubsad D., Nilsson E.E., King S.E., Sadler-Riggleman I., Beck D., Skinner M.K. Assessment of glyphosate induced epigenetic transgenerational inheritance of pathologies and sperm epimutations: generational toxicology // Sci. Rep. 2019. V. 9. № 1. P. 6372. https://doi.org/10.1038/s41598-019-42860-0
- Aitbali Y., Ba-M’hamed S., Elhidar N., Nafis A., Soraa N., Bennis M. Glyphosate based-herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice // Neurotoxicol. Teratol. 2018. V. 67. P. 44–49. https://doi.org/10.1016/j.ntt.2018.04.002
- Kittle R.P., McDermid K.J., Muehlstein L., Balazs G.H. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus // Mar. Pollut. Bull. 2018. V. 127. P. 170–174. https://doi.org/10.1016/j.marpolbul.2017.11.030
- Blot N., Veillat L., Rouz, R., Delatte H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota // PLoS One. 2019. V. 14. № 4. e0215466. https://doi.org/10.1371/journal.pone.0215466
- Zhang F., Qiao Z., Yao C., Sun S., Liu W., Wang J. Effects of the novel HPPD-inhibitor herbicide QYM201 on enzyme activity and microorganisms, and its degradation in soil // Ecotoxicology. 2021. V. 30. Р. 80–90. https://doi.org/10.1007/s10646-020-02302-4
- Castrejón-Godínez M.L., Tovar-Sánchez E., Valencia-Cuevas L., Rosas-Ramírez M.E., Rodríguez A., Mussali-Galante P. Glyphosate pollution treatment and microbial degradation alternatives, a review // Microorganisms. 2021. V. 9. № 11. P. 2322. https://doi.org/10.3390/microorganisms9112322
- Jayaram S., Ayyasamy P.M., Aishwarya K.P., Devi M.P., Rajakumar S. Mechanism of microbial detoxification of heavy metals: A review // J. Pure Appl. Microbiol. 2022. V. 16(3). Р. 1562–1574. https://doi.org/10.22207/JPAM.16.3.64
- El Alaoui A., Raklami A., Bechtaoui N., El Gharmali A., Ouhammou A., Imziln B., Achouak W., Pajuelo E., Oufdou K. Use of native plants and their associated bacteria rhizobiomes to remediate-restore Draa Sfar and Kettara mining sites // Environ. Monitor. Assess., Morocco. 2021. V. 193(4). Р. 232. https://doi.org/10.1007/s10661-021-08977-4
- Madline A., Benidire L., Boularbah A. Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils // Environ. Sci. Pollut. Res. 2021. V. 47. Р. 67185–67202. https://doi.org/10.1007/s11356-021-15168-8
- Чубукова О.В., Хакимова Л.Р., Акимова Е.С., Вершинина З.Р. Филогения и свойства новых штаммов Pseudomonas sp. из ризосферы бобовых растений Южного Урала // Микробиология. 2022. T. 91. № 5. С. 537–546 . https://doi.org/10.31857/S0026365622100196
- Егоршина А.А., Хайруллин Р.М., Лукьянцев М.А., Курамшина З.М., Смирнова Ю.В. Фосфатмобилизующая активность эндофитных штаммов Bacillus subtilis и их влияние на степень микоризации корней пшеницы // Журн. СибирФУ. Биология. 2011. Т. 4. № 2. С. 172–182.
- Кузина Е.В., Рафикова Г.Ф., Коршунова Т.Ю. Фосфатсолюбилизирующие бактерии рода Pseudomonas и эффективность их применения для увеличения доступности фосфора // Изв. УфНЦ РАН. 2021. № 3. С. 11–16. https://doi.org/10.31040/2222-8349-2021-0-3-11-16
- Massot F., Gkorezis P., Van Hamme J., Marino D., Trifunovic B.S., Vukovic G., d’Haen J., Pintelon I., Giulietti A.M., Merini L., Vangronsveld J., Thijs S. Isolation, biochemical and genomic characterization of glyphosate tolerant bacteria to perform microbe-assisted phytoremediation // Front Microbiol. 2021. V. 11. Р. 598507. https://doi.org/10.3389/fmicb.2020.598507
- Aynalem B., Assefa F. Effect of glyphosate and mancozeb on the rhizobia isolated from nodules of Vicia faba L. and on their N2-fixation, North Showa, Amhara Regional State, Ethiopia // Adv. Biol. 2017. https://doi.org/10.1155/2017/5864598
- Asrat A., Sitotaw B., Dawoud T.M., Nafidi H.A., Bourhia M., Mekuriaw A., Wondmie G.F. Effect of glyphosate on the growth and survival of rhizobia isolated from root nodules of grass pea (Lathyrus sativus L.) // Sci. Rep. 2023. V. 13(1). Р. 21535. https://doi.org/10.1038/s41598-023-48424-7
- Masotti F., Garavaglia B.S., Piazza A., Burdisso P., Altabe S., Gottig N., Ottado J. Bacterial isolates from Argentine Pampas and their ability to degrade glyphosate // Sci. Total. Environ. 2021. V. 774. P. 145761. https://doi.org/10.1016/j.scitotenv.2021.145761
- Oleńska E., Małek W., Wójcik M., Szopa S., Swiecicka I., Aleksandrowicz O., Włostowski T., Zawadzka W., Sillen W.M.A., Vangronsveld J., Cholakova I., Langill T., Thijs S. Bacteria associated with Zn-hyperaccumulators Arabidopsis halleri and Arabidopsis arenosa from Zn–Pb–Cd waste heaps in Poland as promising tools for bioremediation // Sci. Rep. 2023. V. 13(1). Р. 12606. https://doi.org/10.1038/s41598-023-39852-6
- Yu J., Jin B., Ji Q., Wang H. Detoxification and metabolism of glyphosate by a Pseudomonas sp. via biogenic manganese oxidation // J. Hazard Mater. 2023. V. 448. P. 130902. https://doi.org/10.1016/j.jhazmat.2023.130902
- Zhao H., Tao K., Zhu J., Liu S., Gao H., Zhou X. Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil // J. Gen. Appl. Microbiol. 2015. V. 61. № 5. P. 165–170. https://doi.org/10.2323/jgam.61.165
- Tan X.L., Othman R.Y., Teo C.H. Isolation and functional characterization of 5-enolpyruvylshikimate 3-phosphate synthase gene from glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47 // Biotechnology. 2020. V. 10(4). Р. 183. https://doi.org/10.1007/s13205-020-02176-7
- Rojas-Solis D., Larsen J., Lindig-Cisneros R. Arsenic and mercury tolerant rhizobacteria that can improve phytoremediation of heavy metal contaminated soils // PeerJ. 2023. V. 11. e14697. https://doi.org/10.7717/peerj.14697
- Oleńska E., Małek W., Sujkowska-Rybkowska M., Szopa S., Włostowski T., Aleksandrowicz O., Swiecicka I., Wójcik M., Thijs S., Vangronsveld J. An alliance of Trifolium repens–Rhizobium leguminosarum bv. trifolii-mycorrhizal fungi from an old Zn–Pb–Cd rich waste heap as a promising tripartite system for phytostabilization of metal polluted soils // Front. Microbiol. 2022. V. 13. Р. 853407. https://doi.org/10.3389/fmicb.2022.853407
Қосымша файлдар
