Синтез гибридных золотосодержащих наночастиц CuFe2O4/Au и CuO/Au с использованием метода анионообменного осаждения
- Autores: Павликов А.Ю.1, Сайкова С.В.1,2, Карпов Д.В.1,2, Самойло А.С.1
-
Afiliações:
- Сибирский федеральный университет
- Институт химии и химической технологии Сибирского отделения Российской академии наук – обособленное подразделение Красноярского научного центра Сибирского отделения Российской академии наук
- Edição: Volume 60, Nº 7 (2024)
- Páginas: 854-868
- Seção: Articles
- URL: https://gynecology.orscience.ru/0002-337X/article/view/679369
- DOI: https://doi.org/10.31857/S0002337X24070092
- EDN: https://elibrary.ru/LQWNDL
- ID: 679369
Citar
Resumo
Гибридные наночастицы на основе оксидов цветных металлов и золота вызывают интерес с точки зрения их применения в катализе и в биомедицине, в частности для проведения магнитной гипертермии и адресной доставки лекарственных препаратов. В данной работе описаны методы получения оксидных ядер (CuO, CuFe2O4) и гибридных наночастиц (CuO/Au, CuFe2O4/Au), поверхность которых покрыта нанокластерами золота размером ~2 нм. Гибридные наночастицы были синтезированы с использованием аминокислоты – L-метионина, выполняющей функции восстановителя и “якоря” между оксидным ядром и золотыми кластерами. Предложенный в работе метод получения оксидных ядер СuO и CuFe2O4 – анионообменное осаждение – является простым, быстрым и легко воспроизводимым в обычных лабораторных условиях. Показано, что в ходе анионообменного осаждения Сu2+ без полисахарида формируются наночастицы оксида меди(II) вытянутой формы длиной 85 ± 3 нм и толщиной 15.1 ± 0.3 нм, а при анионообменном осаждении Cu2+ и Fe3+ в присутствии полисахарида (декстрана-40) и при последующей температурной обработке (850°С) прекурсора стехиометрического состава формируются наночастицы феррита меди с размером 18.3 ± 0.4 нм. Оценка биосовместимости всех синтезированных материалов (СuO, CuFe2O4, CuO/Au, CuFe2O4/Au) на тест-микроорганизмах Escherichia coli, Bacillus subtilis показала, что наличие золота на поверхности наночастиц повышает их биосовместимость и делает подходящими для использования в биомедицинских целях.
Palavras-chave
Texto integral

Sobre autores
А. Павликов
Сибирский федеральный университет
Autor responsável pela correspondência
Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041
С. Сайкова
Сибирский федеральный университет; Институт химии и химической технологии Сибирского отделения Российской академии наук – обособленное подразделение Красноярского научного центра Сибирского отделения Российской академии наук
Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041; Академгородок, 50/24, Красноярск, 660036
Д. Карпов
Сибирский федеральный университет; Институт химии и химической технологии Сибирского отделения Российской академии наук – обособленное подразделение Красноярского научного центра Сибирского отделения Российской академии наук
Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041; Академгородок, 50/24, Красноярск, 660036
А. Самойло
Сибирский федеральный университет
Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041
Bibliografia
- Sanchez L.M., Alvarez V.A. Advances in Magnetic Noble Metal/Iron-Based Oxide Hybrid Nanoparticles as Biomedical Devices // Bioengineering. 2019. V. 6. P. 75. https://doi.org/10.3390/bioengineering6030075
- Wang H., Shen J., Li Y., Wei Z., Cao G., Gai Z., Hong K., Banerjee P., Zhou S. Porous Carbon Protected Magnetite and Silver Hybrid Nanoparticles: Morphological Control, Recyclable Catalysts, and Multicolor Cell Imaging // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 9446–9453. https://doi.org/10.1021/am4032532
- Lu L., Hao Q., Lei W., Xia X., Liu P., Sun D., Wang X., Yang X. Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction // Small. 2015.V. 11. P. 5833–5843. https://doi.org/10.1002/smll.201502322
- Saire-Saire S., Barbosa E.C.M., Garcia D., Andrade L.H., Garcia-Segura S., Camargo P.H.C., Alarcon H. Green Synthesis of Au Decorated CoFe2O4 Nanoparticles for Catalytic Reduction of 4-nitrophenol and Dimethylphenylsilane Oxidation // RSC Adv. 2019. V. 9. P. 22116–22123. https://doi.org/10.1039/C9RA04222A
- Silvestri A., Mondini S., Mareli S., Prifferi V., Faciola L., Ponti A., Ferretti A.M., Poloto L. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles // Langmuir. 2016. V. 32. P. 7117–7126. https://doi.org/10.1021/acs.langmuir.6b01266
- Efremova M.V., Nalench Y.A., Myrovali E. et al. Size-Selected Fe3O4–Au Hybrid Nanoparticles for Improved Magnetism-Based Theranostics // Beilstein J. Nanotechnol. 2018. V. 9. P. 2684–2699. https://doi.org/10.3762/bjnano.9.251
- Yoo D., Lee J.H. et al. Theranostic Magnetic Nanoparticles // Acc. Chem. Res. 2011.V. 44. P. 863–874. https://doi.org/10.1021/ar200085c
- Reichel V.E., Matuszak J., Bente K. et al. Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool // Nanomaterials. 2020. V. 10. P. 2014. https://doi.org/10.3390/nano10102014
- Mohapatra S., Rout S.R., Das R.K. et al. Highly Hydrophilic Luminescent Magnetic Mesoporous Carbon Nanospheres for Controlled Release of Anticancer Drug and Multimodal Imaging // Langmuir. 2016. V. 32. P. 1611–1620. https://doi.org/10.1021/acs.langmuir.5b03898
- Jat S.K., Selvaraj D., Muthiah R. et al. A Self-Releasing Magnetic Nanomaterial for Sustained Release of Doxorubicin and Its Anticancer Cell Activity // ChemistrySelect. 2018. V. 3. P. 13123–13131. https://doi.org/10.1002/slct.201802766
- Shima, Damodaran P. Mesoporous Magnetite Nanoclusters as Efficient Nanocarriers for Paclitaxel Delivery // ChemistrySelect. 2020. V. 5. P. 9261–9268. https://doi.org/10.1002/slct.202001102
- Oh Y., Moorthy M.S., Manivasagan P. et al. Magnetic Hyperthermia And pH-Responsive Effective Drug Delivery to the Sub-Cellular Level of Human Breast Cancer Cells By Modified CoFe2O4 Nanoparticles // Biochimie. 2017. V. 133. P. 7–19. https://doi.org/10.1016/j.biochi.2016.11.012
- Mohapatra S., Rout S.R. et al. Monodisperse Mesoporous Cobalt Ferrite Nanoparticles: Synthesis and Application in Targeted Delivery of Antitumor Drugs // J. Mater. Chem. 2011. V. 21. P. 9185–9193. https://doi.org/10.1039/C1JM10732A
- Zhao Z., Huang D., Yin Z. et al. Magnetite Nanoparticles as Smart Carriers to Manipulate the Cytotoxicity of Anticancer Drugs: Magnetic Control and pH-Responsive Release // J. Mater. Chem. 2012. V. 22. P. 15717–15725. https://doi.org/10.1039/C2JM31692G
- Ebadi M., Buskaran K., Bullo S. et al. Synthesis and Cytotoxicity Study of Magnetite Nanoparticles Coated with Polyethylene Glycol and Sorafenib–Zinc/Aluminium Layered Double Hydroxide // Polymers. 2020. V. 12. P. 2716. https://doi.org/10.3390/polym12112716
- Odio O.F., Lartundo-Rojas L., Santiago-Jacinto P., Martínez R., Reguera E. Sorption of Gold by Naked and Thiol-Capped Magnetite Nanoparticles: An XPS Approach // J. Phys. Chem. C. 2014. V. 118. P. 2776–2791. https://doi.org/10.1021/jp409653t
- Bui T.Q., Ngo H.T.M., Tran H.T. Surface-Protective Assistance of Ultrasound in Synthesis of Superparamagnetic Magnetite Nanoparticles and in Preparation of Mono-Core Magnetite-Silica Nanocomposites // J. Sci. Adv. Mater. Devices. 2018. V. 3. P. 323–330. https://doi.org/10.1016/j.jsamd.2018.07.002
- Nikolić V.N., Vasić M.M., Kisić D. Observation of c-CuFe2O4 Nanoparticles of the Same Crystallite Size in Different Nanocomposite Materials: The Influence of Fe3+ Cations // J. Solid State Chem. 2019. V. 275. P. 187–196. https://doi.org/10.1016/j.jssc.2019.04.007
- Ponhan W., Maensiri S. Fabrication and Magnetic Properties of Electrospun Copper Ferrite (CuFe2O4) Nanofibers // Solid State Sci. 2009. V. 11. P. 479–484. https://doi.org/10.1016/j.solidstatesciences. 2008.06.019
- Xiao Z., Jin S., Wang X. et al. Preparation, Structure and Catalytic Properties of Magnetically Separable Cu-Fe Catalysts for Glycerol Hydrogenolysis // J. Mater. Chem. 2012. V. 22. P. 16598. https://doi.org/10.1039/C2JM32869K
- Teraoka Y., Kagawa S. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulates // Catal. Surv. Jpn. 1998. V. 2. P. 155–164. https://doi.org/10.1163/156856700X00246
- Lone S.A., Sanyal P., Das P., Sadhu K.K. Citrate Stabilized Au-FexOy Nanocomposites for Variable Exchange Bias, Catalytic Properties and Reversible Interaction with Doxorubicin // ChemistrySelect. 2019. V. 4. P. 8237–8245. https://doi.org/10.1002/slct.201901931
- Félix L.L., Sanz B., Sebastián V. et al. Gold-Decorated Magnetic Nanoparticles Design for Hyperthermia Applications and as a Potential Platform for Their Surface-Functionalization // Sci. Rep. 2019. V. 9. P. 1–11. https://doi.org/10.1038/s41598-019-40769-2
- Khan A.U., Ullah S., Yuan Q. et al. In Situ Fabrication of Au–CoFe2O4: An Efficient Catalyst for Soot Oxidation // Appl. Nanosci. 2020. V. 10. P. 3901–3910. https://doi.org/10.1007/s13204-020-01502-y
- Gao Q., Zhao A., Guo H. et al. Controlled Synthesis of Au–Fe3O4 Hybrid Hollow Spheres with Excellent Sers Activity and Catalytic Properties // Dalton Trans. 2014. V. 43. P. 7998–8006. https://doi.org/10.1039/C4DT00312H
- Xia Q., Ren G., Fu S. et al. Fabrication of Fe3O4@Au Hollow Spheres with Recyclable and Efficient Catalytic Properties // New J. Chem. 2015. V. 40. P. 818–824. https://doi.org/10.1039/C5NJ02436F
- Meng X., Li B., Ren X. et al. One-Pot Gradient Solvothermal Synthesis of Au–Fe3O4 Hybrid Nanoparticles for Magnetically Recyclable Catalytic Applications // J. Mater. Chem. A. 2013. V. 1. P. 10513. https://doi.org/10.1039/C3TA12141K
- Lei J., Liu Y., Wang X., Hu P., Peng X. Au/CuO Nanosheets Composite for Glucose Sensor and CO Oxidation // RSC Advances. 2015. V. 12. P. 9130–9137. https://doi.org/10.1039/c4ra12697a
- Wang S., Zheng M., Zhang X., Zhuo M. et al. Flowerlike CuO/Au Nanoparticle Heterostructures for Nonenzymatic Glucose Detection // ACS Appl. Nano Mater. 2021. V. 4. P. 5808–5815. https://doi.org/10.1021/acsanm.1c00607
- Zhang J., Teo J., Chen X. et al. A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water // ACS Catal. 2014. V. 4. P. 1574–1583. https://doi.org/10.1021/cs401199f
- Huang C.Y., Chatterjee A., Liu S.B. et al. Photoluminescence Properties of a Single Tapered CuO Nanowire // Appl. Surf. Sci. 2010. V. 256. P. 3688–3692. https://doi.org/10.1016/j.apsusc.2010.01.007
- Su Y.K., Shen C.M. et al. Controlled Synthesis of Highly Ordered CuO Nanowire Arrays by Template-Based Sol-Gel Route // Trans. Nonferrous Met. Soc. China. 2007. V. 17. P. 783–786. https://doi.org/10.1016/S1003-6326(07)60174-5
- Cao M.H., Hu C.W., Wang Y.H. et al. A Controllable Synthetic Route to Cu, Cu2O, and CuO Nanotubes and Nanorods// Chem. Commun. 2003. V. 15. P. 1884–1885. https://doi.org/10.1039/B304505F
- Anandan S., Wen X., Yang S. Room Temperature Growth of CuO Nanorod Arrays on Copper and Their Application as a Cathode in Dye-Sensitized Solar Cells // Mater. Chem. Phys. 2005. V. 93. P. 35–40. https://doi.org/10.1016/j.matchemphys.2005. 02.002
- Lian Q., Liu H., Zheng X., Li X., Zhang F., Gao J. Enhanced Peroxidase-Like Activity of CuO/Pt Nanoflowers for Colorimetric and Ultrasensitive Hg2+ Detection in Water Sample // Appl. Surf. Sci. 2019. V. 483. P. 551–561. https://doi.org/10.1016/j.apsusc.2019.03.337
- Arya S., Mahajan P., Singh A., Kour R. Comparative Study of CuO, CuO@Ag and Cuo@Ag:La Nanoparticles for Their Photosensing Properties // Mater. Res. Express. 2019. V. 6. P. 116313. https://doi.org/10.1088/2053-1591/ab49ab
- Steinhauer S., Zhao J., Singh V. et al. Thermal Oxidation of Size-Selected Pd Nanoparticles Supported on CuO Nanowires: The Role of the CuO–Pd Interface // Chem. Mater. 2017. V. 29. P. 6153–6160. https://doi.org/10.1021/acs.chemmater.7b02242
- Guo X., Diao P., Xu D. et al. CuO/Pd Composite Photocathodes for Photoelectrochemical Hydrogen Evolution Reaction // Int. J. Hydrog. Energy. 2014. V. 39. P. 7686–7696. https://doi.org/10.1016/j.ijhydene.2014.03.084
- Zhang X., Yang Y., Que W., Du Y. Synthesis of High Quality CuO Nanoflakes and CuO–Au Nanohybrids for Superior Visible Light Photocatalytic Behavior // RSC Advances. 2016. V. 6. P. 81607–81613. https://doi.org/10.1039/C6RA12281G
- Saikova S., Pavlikov A., Karpov D. et al. Copper Ferrite Nanoparticles Synthesized Using Anion-Exchange Resin: Influence of Synthesis Parameters on the Cubic Phase Stability // Materials. 2023. V. 16. P. 2318. https://doi.org/10.3390/ma16062318
- Saikova S.V., Trofimova T.V., Pavlikov A.Y., Samoilo A.S. Effect of Polysaccharide Additions on the Anion-Exchange Deposition of Cobalt Ferrite Nanoparticles // Russ. J. Inorg. Chem. 2020. V. 65. № 3.P. 291–298. https://doi.org/10.1134/S0036023620030110
- Ivantsov R., Evsevskaya N., Saikova S. et al Synthesis and Characterization of Dy3Fe5O12 Nanoparticles Fabricated with the Anion Resin Exchange Precipitation Method // Mater. Sci. Eng. B. 2017. V. 226. P. 171–176. https://doi.org/10.1016/j.mseb.2017.09.016
- Evsevskaya N., Pikurova E., Saikova S.V., Nemtsev I.V. Effect of the Deposition Conditions on the Anion Resin Exchange Precipitation of Indium(III) Hydroxide // ACS Omega. 2020. V. 5. P. 4542–4547. https://doi.org/10.1021/acsomega.9b03877
- Trofimova T.V., Saikova S.V., Panteleeva M.V., Pashkov G.L., Bondarenko G.N. Anion-Exchange Synthesis of Copper Ferrite Powders // Glass Ceram. 2018. V. 75. P. 74–79. https://doi.org/10.1007/s10717-018-0032-7
- Saikova S.V., Kirshneva E.A., Panteleeva M.V., Pikurova E.V., Evsevskaya N.P. Production of Gadolinium Iron Garnet by Anion Resin Exchange Precipitation // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1191–1198. https://doi.org/10.1134/S0036023619100127
- Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. федер. ун-т, 2018. 198 с.
- Finch G.I., Sinha A.P.B., Sinha K.P. Crystal Distortion in Ferrite-Manganites // Proc. R. Soc. A Math. Phys. Eng. Sci. 1957. V. 242. P. 28–35. https://doi.org/10.1098/rspa.1957.0151
- Balagurov A.M., Bobrikov I.A., Maschenko M.S., Sangaa D., Simkin V.G. Structural Phase Transition in CuFe2O4 Spinel // Crystallogr. Rep. 2013. V. 58. P. 710–717. https://doi.org/10.1134/S1063774513040044
- Павликов А.Ю., Сайкова С.В., Самойло А.С., Карпов Д.В., Новикова С.А. Синтез наночастиц оксида меди(II) методом анионообменного осаждения и получение стабильных гидрозолей на их основе // Журн. неорган. химии. 2024. № 2. С. 245–257. https://doi.org/10.31857/S0044457X24020121
- Cudennec Y., Lecerf A. The Transformation of Cu(OH)2 into CuO, Revisited // Solid State Sci. 2003. V. 5. P. 1471. https://doi.org/10.1016/j.solidstatesciences. 2003.09.009
- Singh D.P., Ojha A.K., Srivastava O.N. Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheetlike) Nanostructures by Simple Wet Chemical Route // J. Mater. Chem. C. 2009. V. 113. P. 3409. https://doi.org/10.1021/jp804832g
- Vaseem M., Hong A.R., Kim R.T. et al. Copper Oxide Quantum Dot Ink for Inkjet-Driven Digitally Controlled High Mobility Field Effect Transistors // J. Mater. Chem. C. 2013. V. 1. P. 2112. https://doi.org/10.1039/C3TC00869J
- Xie L., Qian W., Yang S., Sun J., Gong T. A Facile and Green Synthetic Route for Preparation of Heterostructure Fe3O4@Au Nanocomposites // MATEC Web Conf. EDP Sci. 2017. V. 88. P. 02001. https://doi.org/10.1051/matecconf/20178802001
- Li Z.H., Bai J.H., Zhang X. et al. Facile Synthesis of Au Nanoparticle-Coated Fe3O4 Magnetic Composite Nanospheres and Their Application in SERS Detection of Malachite Green // Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 2020. V. 241. P. 118532. https://doi.org/10.1016/j.saa.2020.118532
- Liu X., Yang X., Li K. et al. Fe3O4@Au Sers Tags-Based Lateral Flow Assay for Simultaneous Detection of Serum Amyloid A and C-Reactive Protein in Unprocessed Blood Sample // Sens. Actuators B: Chem. 2020. V. 320. P. 128350. https://doi.org/10.1016/j.snb.2020.128350
- Chen Y., Zhang Y., Kou Q. et al. Enhanced Catalytic Reduction of 4-Nitrophenol Driven by Fe3O4-Au Magnetic Nanocomposite Interface Engineering: from Facile Preparation to Recyclable Application // Nanomaterials. 2018. V. 8. P. 353. https://doi.org/10.3390/nano8050353
- Kheradmand E., Poursalehi R., Delavari H. Optical and Magnetic Properties of Iron-Enriched Fe/Fexoy@Au Magnetoplas-Monic Nanostructures // Appl. Nanosci. 2020. V. 10. P. 1083–1094. https://doi.org/10.1007/s13204-019-01246-4
- Huang W.C., Tsai P.J., Chen Y.C. Multifunctional Fe3O4@Au Nanoeggs as Photothermal Agents for Selective Killing of Nosocomial and Antibiotic-Resistant Bacteria // Small. 2009. V. 5. P. 51–56. https://doi.org/10.1002/smll.200801042
- Ghorbani M., Mahmoodzadeh F., Nezhad-Mokhtari P., Hamishehkar H. A Novel Polymeric Micelle-Decorated Fe3O4/Au Core–Shell Nanoparticle For pH and Reduction-Responsive Intracellular Co-Delivery of Doxorubicin and 6-Mercaptopurine // New J. Chem. 2018. V. 42. P. 18038–18049. https://doi.org/10.1039/C8NJ03310B
- Mikalauskaitė A., Kondrotas R., Niaura G., Jagminas A. Gold-Coated Cobalt Ferrite Nanoparticles via Methionine-Induced Reduction // J. Phys. Chem. C. 2015. V. 119. P. 17398–17407. https://doi.org/10.1021/acs.jpcc.5b03528
- Jagminas A., Mažeika K., Kondrotas R. et al. Functionalization of Cobalt Ferrite Nanoparticles by a Vitamin C-Assisted Covering with Gold // Nanomater. Nanotechnol. 2014. V. 4. P. 11. https://doi.org/10.5772/584
- Zeng J., Gong M., Wang D. et al. Direct Synthesis of Water-Dispersible Magnetic/Plasmonic Heteronanostructures for Multimodality Biomedical Imaging // Nano Lett. 2019.V. 19. P. 3011–3018. https://doi.org/10.1021/acs.nanolett.9b00171
- Saikova S., Pavlikov A., Trofimova T. et al. Hybrid Nanoparticles Based on Cobalt Ferrite and Gold: Preparation and Characterization // Metals. 2021. V. 11. P. 705. https://doi.org/10.3390/met11050705
- Saykova D., Saikova S., Mikhlin, Y., Panteleeva M., Ivantsov R., Belova E. Synthesis and Characterization of Core–Shell Magnetic Nanoparticles NiFe2O4@Au // Metals. 2020. V. 10. P. 1075. https://doi.org/10.3390/met10081075
- Сайкова С.В., Немкова Д.И., Пикурова Е.В., Самойло А.С. Применение анионообменного осаждения для получения нанопорошка феррита никеля, модифицированного плазмонными частицами // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1011–1020. https://doi.org/10.31857/S0044457X23600160
- Kim G., Weiss S.J., Levine R.L. Methionine Oxidation and Reduction in Proteins // Biochim. Biophys. Acta. 2014. V. 1840. P. 901–905. https://doi.org/10.1016/j.bbagen.2013.04.038
- Glišić B.Đ., Djuran M.I., Stanić Z.D. et al. Oxidation of Methionine Residue in Gly-Met Dipeptide Induced by [Au(En)Cl2]+ and Influence of the Chelated Ligand on the Rate of this Redox Process // Gold Bull. 2014. V. 47. P. 33–40. https://doi.org/10.1007/s13404-013-0108-7
- Vujačić A.V., Savić J.Z., Sovilj S.P. et al. Mechanism of Complex Formation Between [Aucl4]− and L-Methionine // Polyhedron. 2009. V. 28. № 3. P. 539–599. https://doi.org/10.1016/j.poly.2008.11.045
- Natile G., Bordignon E., Cattalini L. Chloroauric Acid as Oxidant Stereospecific Oxidation of Methionine to Methionine Sulfoxide // Inorg. Chem. 1976. V. 15. № 1. P. 246–248. https://doi.org/10.1021/ic50155a054
- Miao C., Jia P., Luo C. et al. The Size-Dependent in vivo Toxicity of Amorphous Silica Nanoparticles: A Systematic Review // Ecotoxicol. Environ. Saf. 2024. V. 271. P. 115910. https://doi.org/10.1016/j.ecoenv.2023.115910
- Dong X., Wu Z., Li X., Xiao L., Yang M. et al. The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies // Int. J. Nanomed. 2020. V. 15. P. 9089–9113. https://doi.org/10.2147/IJN.S276105
- Huang Y.-W., Cambre M., Lee H.-J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms // Int. J. Mol. Sci. 2017. V. 18. P. 2702. https://doi.org/10.3390/ijms18122702
- Baek M., Kim M.K., Cho H.J. et al. Factors Influencing the Cytotoxicity of Zinc Oxide Nanoparticles: Particle Size and Surface Charge // J. Phys. Conf. Ser. 2011. V. 304. P. 012044. https://doi.org/10.1088/1742-6596/304/1/012044
- Salleh A., Naomi R., Utami N.D., Mohammad A.W., Mahmoudi E., Mustafa N., Fauzi M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action // Nanomaterials. 2020. V. 10. P. 1566. https://doi.org/10.3390/nano10081566
- Kędziora A., Speruda M., Krzyżewska E., Rybka J., Łukowiak A., Bugla-Płoskońska G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents // Int. J. Mol. Sci. 2018. V. 19. P. 444. https://doi.org/10.3390/ijms19020444
Arquivos suplementares
