Синтез гибридных золотосодержащих наночастиц CuFe2O4/Au и CuO/Au с использованием метода анионообменного осаждения

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Гибридные наночастицы на основе оксидов цветных металлов и золота вызывают интерес с точки зрения их применения в катализе и в биомедицине, в частности для проведения магнитной гипертермии и адресной доставки лекарственных препаратов. В данной работе описаны методы получения оксидных ядер (CuO, CuFe2O4) и гибридных наночастиц (CuO/Au, CuFe2O4/Au), поверхность которых покрыта нанокластерами золота размером ~2 нм. Гибридные наночастицы были синтезированы с использованием аминокислоты – L-метионина, выполняющей функции восстановителя и “якоря” между оксидным ядром и золотыми кластерами. Предложенный в работе метод получения оксидных ядер СuO и CuFe2O4 – анионообменное осаждение – является простым, быстрым и легко воспроизводимым в обычных лабораторных условиях. Показано, что в ходе анионообменного осаждения Сu2+ без полисахарида формируются наночастицы оксида меди(II) вытянутой формы длиной 85 ± 3 нм и толщиной 15.1 ± 0.3 нм, а при анионообменном осаждении Cu2+ и Fe3+ в присутствии полисахарида (декстрана-40) и при последующей температурной обработке (850°С) прекурсора стехиометрического состава формируются наночастицы феррита меди с размером 18.3 ± 0.4 нм. Оценка биосовместимости всех синтезированных материалов (СuO, CuFe2O4, CuO/Au, CuFe2O4/Au) на тест-микроорганизмах Escherichia coli, Bacillus subtilis показала, что наличие золота на поверхности наночастиц повышает их биосовместимость и делает подходящими для использования в биомедицинских целях.

Texto integral

Acesso é fechado

Sobre autores

А. Павликов

Сибирский федеральный университет

Autor responsável pela correspondência
Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041

С. Сайкова

Сибирский федеральный университет; Институт химии и химической технологии Сибирского отделения Российской академии наук – обособленное подразделение Красноярского научного центра Сибирского отделения Российской академии наук

Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041; Академгородок, 50/24, Красноярск, 660036

Д. Карпов

Сибирский федеральный университет; Институт химии и химической технологии Сибирского отделения Российской академии наук – обособленное подразделение Красноярского научного центра Сибирского отделения Российской академии наук

Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041; Академгородок, 50/24, Красноярск, 660036

А. Самойло

Сибирский федеральный университет

Email: apavlikov98@mail.ru
Rússia, Свободный пр., 79, Красноярск, 660041

Bibliografia

  1. Sanchez L.M., Alvarez V.A. Advances in Magnetic Noble Metal/Iron-Based Oxide Hybrid Nanoparticles as Biomedical Devices // Bioengineering. 2019. V. 6. P. 75. https://doi.org/10.3390/bioengineering6030075
  2. Wang H., Shen J., Li Y., Wei Z., Cao G., Gai Z., Hong K., Banerjee P., Zhou S. Porous Carbon Protected Magnetite and Silver Hybrid Nanoparticles: Morphological Control, Recyclable Catalysts, and Multicolor Cell Imaging // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 9446–9453. https://doi.org/10.1021/am4032532
  3. Lu L., Hao Q., Lei W., Xia X., Liu P., Sun D., Wang X., Yang X. Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction // Small. 2015.V. 11. P. 5833–5843. https://doi.org/10.1002/smll.201502322
  4. Saire-Saire S., Barbosa E.C.M., Garcia D., Andrade L.H., Garcia-Segura S., Camargo P.H.C., Alarcon H. Green Synthesis of Au Decorated CoFe2O4 Nanoparticles for Catalytic Reduction of 4-nitrophenol and Dimethylphenylsilane Oxidation // RSC Adv. 2019. V. 9. P. 22116–22123. https://doi.org/10.1039/C9RA04222A
  5. Silvestri A., Mondini S., Mareli S., Prifferi V., Faciola L., Ponti A., Ferretti A.M., Poloto L. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles // Langmuir. 2016. V. 32. P. 7117–7126. https://doi.org/10.1021/acs.langmuir.6b01266
  6. Efremova M.V., Nalench Y.A., Myrovali E. et al. Size-Selected Fe3O4–Au Hybrid Nanoparticles for Improved Magnetism-Based Theranostics // Beilstein J. Nanotechnol. 2018. V. 9. P. 2684–2699. https://doi.org/10.3762/bjnano.9.251
  7. Yoo D., Lee J.H. et al. Theranostic Magnetic Nanoparticles // Acc. Chem. Res. 2011.V. 44. P. 863–874. https://doi.org/10.1021/ar200085c
  8. Reichel V.E., Matuszak J., Bente K. et al. Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool // Nanomaterials. 2020. V. 10. P. 2014. https://doi.org/10.3390/nano10102014
  9. Mohapatra S., Rout S.R., Das R.K. et al. Highly Hydrophilic Luminescent Magnetic Mesoporous Carbon Nanospheres for Controlled Release of Anticancer Drug and Multimodal Imaging // Langmuir. 2016. V. 32. P. 1611–1620. https://doi.org/10.1021/acs.langmuir.5b03898
  10. Jat S.K., Selvaraj D., Muthiah R. et al. A Self-Releasing Magnetic Nanomaterial for Sustained Release of Doxorubicin and Its Anticancer Cell Activity // ChemistrySelect. 2018. V. 3. P. 13123–13131. https://doi.org/10.1002/slct.201802766
  11. Shima, Damodaran P. Mesoporous Magnetite Nanoclusters as Efficient Nanocarriers for Paclitaxel Delivery // ChemistrySelect. 2020. V. 5. P. 9261–9268. https://doi.org/10.1002/slct.202001102
  12. Oh Y., Moorthy M.S., Manivasagan P. et al. Magnetic Hyperthermia And pH-Responsive Effective Drug Delivery to the Sub-Cellular Level of Human Breast Cancer Cells By Modified CoFe2O4 Nanoparticles // Biochimie. 2017. V. 133. P. 7–19. https://doi.org/10.1016/j.biochi.2016.11.012
  13. Mohapatra S., Rout S.R. et al. Monodisperse Mesoporous Cobalt Ferrite Nanoparticles: Synthesis and Application in Targeted Delivery of Antitumor Drugs // J. Mater. Chem. 2011. V. 21. P. 9185–9193. https://doi.org/10.1039/C1JM10732A
  14. Zhao Z., Huang D., Yin Z. et al. Magnetite Nanoparticles as Smart Carriers to Manipulate the Cytotoxicity of Anticancer Drugs: Magnetic Control and pH-Responsive Release // J. Mater. Chem. 2012. V. 22. P. 15717–15725. https://doi.org/10.1039/C2JM31692G
  15. Ebadi M., Buskaran K., Bullo S. et al. Synthesis and Cytotoxicity Study of Magnetite Nanoparticles Coated with Polyethylene Glycol and Sorafenib–Zinc/Aluminium Layered Double Hydroxide // Polymers. 2020. V. 12. P. 2716. https://doi.org/10.3390/polym12112716
  16. Odio O.F., Lartundo-Rojas L., Santiago-Jacinto P., Martínez R., Reguera E. Sorption of Gold by Naked and Thiol-Capped Magnetite Nanoparticles: An XPS Approach // J. Phys. Chem. C. 2014. V. 118. P. 2776–2791. https://doi.org/10.1021/jp409653t
  17. Bui T.Q., Ngo H.T.M., Tran H.T. Surface-Protective Assistance of Ultrasound in Synthesis of Superparamagnetic Magnetite Nanoparticles and in Preparation of Mono-Core Magnetite-Silica Nanocomposites // J. Sci. Adv. Mater. Devices. 2018. V. 3. P. 323–330. https://doi.org/10.1016/j.jsamd.2018.07.002
  18. Nikolić V.N., Vasić M.M., Kisić D. Observation of c-CuFe2O4 Nanoparticles of the Same Crystallite Size in Different Nanocomposite Materials: The Influence of Fe3+ Cations // J. Solid State Chem. 2019. V. 275. P. 187–196. https://doi.org/10.1016/j.jssc.2019.04.007
  19. Ponhan W., Maensiri S. Fabrication and Magnetic Properties of Electrospun Copper Ferrite (CuFe2O4) Nanofibers // Solid State Sci. 2009. V. 11. P. 479–484. https://doi.org/10.1016/j.solidstatesciences. 2008.06.019
  20. Xiao Z., Jin S., Wang X. et al. Preparation, Structure and Catalytic Properties of Magnetically Separable Cu-Fe Catalysts for Glycerol Hydrogenolysis // J. Mater. Chem. 2012. V. 22. P. 16598. https://doi.org/10.1039/C2JM32869K
  21. Teraoka Y., Kagawa S. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulates // Catal. Surv. Jpn. 1998. V. 2. P. 155–164. https://doi.org/10.1163/156856700X00246
  22. Lone S.A., Sanyal P., Das P., Sadhu K.K. Citrate Stabilized Au-FexOy Nanocomposites for Variable Exchange Bias, Catalytic Properties and Reversible Interaction with Doxorubicin // ChemistrySelect. 2019. V. 4. P. 8237–8245. https://doi.org/10.1002/slct.201901931
  23. Félix L.L., Sanz B., Sebastián V. et al. Gold-Decorated Magnetic Nanoparticles Design for Hyperthermia Applications and as a Potential Platform for Their Surface-Functionalization // Sci. Rep. 2019. V. 9. P. 1–11. https://doi.org/10.1038/s41598-019-40769-2
  24. Khan A.U., Ullah S., Yuan Q. et al. In Situ Fabrication of Au–CoFe2O4: An Efficient Catalyst for Soot Oxidation // Appl. Nanosci. 2020. V. 10. P. 3901–3910. https://doi.org/10.1007/s13204-020-01502-y
  25. Gao Q., Zhao A., Guo H. et al. Controlled Synthesis of Au–Fe3O4 Hybrid Hollow Spheres with Excellent Sers Activity and Catalytic Properties // Dalton Trans. 2014. V. 43. P. 7998–8006. https://doi.org/10.1039/C4DT00312H
  26. Xia Q., Ren G., Fu S. et al. Fabrication of Fe3O4@Au Hollow Spheres with Recyclable and Efficient Catalytic Properties // New J. Chem. 2015. V. 40. P. 818–824. https://doi.org/10.1039/C5NJ02436F
  27. Meng X., Li B., Ren X. et al. One-Pot Gradient Solvothermal Synthesis of Au–Fe3O4 Hybrid Nanoparticles for Magnetically Recyclable Catalytic Applications // J. Mater. Chem. A. 2013. V. 1. P. 10513. https://doi.org/10.1039/C3TA12141K
  28. Lei J., Liu Y., Wang X., Hu P., Peng X. Au/CuO Nanosheets Composite for Glucose Sensor and CO Oxidation // RSC Advances. 2015. V. 12. P. 9130–9137. https://doi.org/10.1039/c4ra12697a
  29. Wang S., Zheng M., Zhang X., Zhuo M. et al. Flowerlike CuO/Au Nanoparticle Heterostructures for Nonenzymatic Glucose Detection // ACS Appl. Nano Mater. 2021. V. 4. P. 5808–5815. https://doi.org/10.1021/acsanm.1c00607
  30. Zhang J., Teo J., Chen X. et al. A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water // ACS Catal. 2014. V. 4. P. 1574–1583. https://doi.org/10.1021/cs401199f
  31. Huang C.Y., Chatterjee A., Liu S.B. et al. Photoluminescence Properties of a Single Tapered CuO Nanowire // Appl. Surf. Sci. 2010. V. 256. P. 3688–3692. https://doi.org/10.1016/j.apsusc.2010.01.007
  32. Su Y.K., Shen C.M. et al. Controlled Synthesis of Highly Ordered CuO Nanowire Arrays by Template-Based Sol-Gel Route // Trans. Nonferrous Met. Soc. China. 2007. V. 17. P. 783–786. https://doi.org/10.1016/S1003-6326(07)60174-5
  33. Cao M.H., Hu C.W., Wang Y.H. et al. A Controllable Synthetic Route to Cu, Cu2O, and CuO Nanotubes and Nanorods// Chem. Commun. 2003. V. 15. P. 1884–1885. https://doi.org/10.1039/B304505F
  34. Anandan S., Wen X., Yang S. Room Temperature Growth of CuO Nanorod Arrays on Copper and Their Application as a Cathode in Dye-Sensitized Solar Cells // Mater. Chem. Phys. 2005. V. 93. P. 35–40. https://doi.org/10.1016/j.matchemphys.2005. 02.002
  35. Lian Q., Liu H., Zheng X., Li X., Zhang F., Gao J. Enhanced Peroxidase-Like Activity of CuO/Pt Nanoflowers for Colorimetric and Ultrasensitive Hg2+ Detection in Water Sample // Appl. Surf. Sci. 2019. V. 483. P. 551–561. https://doi.org/10.1016/j.apsusc.2019.03.337
  36. Arya S., Mahajan P., Singh A., Kour R. Comparative Study of CuO, CuO@Ag and Cuo@Ag:La Nanoparticles for Their Photosensing Properties // Mater. Res. Express. 2019. V. 6. P. 116313. https://doi.org/10.1088/2053-1591/ab49ab
  37. Steinhauer S., Zhao J., Singh V. et al. Thermal Oxidation of Size-Selected Pd Nanoparticles Supported on CuO Nanowires: The Role of the CuO–Pd Interface // Chem. Mater. 2017. V. 29. P. 6153–6160. https://doi.org/10.1021/acs.chemmater.7b02242
  38. Guo X., Diao P., Xu D. et al. CuO/Pd Composite Photocathodes for Photoelectrochemical Hydrogen Evolution Reaction // Int. J. Hydrog. Energy. 2014. V. 39. P. 7686–7696. https://doi.org/10.1016/j.ijhydene.2014.03.084
  39. Zhang X., Yang Y., Que W., Du Y. Synthesis of High Quality CuO Nanoflakes and CuO–Au Nanohybrids for Superior Visible Light Photocatalytic Behavior // RSC Advances. 2016. V. 6. P. 81607–81613. https://doi.org/10.1039/C6RA12281G
  40. Saikova S., Pavlikov A., Karpov D. et al. Copper Ferrite Nanoparticles Synthesized Using Anion-Exchange Resin: Influence of Synthesis Parameters on the Cubic Phase Stability // Materials. 2023. V. 16. P. 2318. https://doi.org/10.3390/ma16062318
  41. Saikova S.V., Trofimova T.V., Pavlikov A.Y., Samoilo A.S. Effect of Polysaccharide Additions on the Anion-Exchange Deposition of Cobalt Ferrite Nanoparticles // Russ. J. Inorg. Chem. 2020. V. 65. № 3.P. 291–298. https://doi.org/10.1134/S0036023620030110
  42. Ivantsov R., Evsevskaya N., Saikova S. et al Synthesis and Characterization of Dy3Fe5O12 Nanoparticles Fabricated with the Anion Resin Exchange Precipitation Method // Mater. Sci. Eng. B. 2017. V. 226. P. 171–176. https://doi.org/10.1016/j.mseb.2017.09.016
  43. Evsevskaya N., Pikurova E., Saikova S.V., Nemtsev I.V. Effect of the Deposition Conditions on the Anion Resin Exchange Precipitation of Indium(III) Hydroxide // ACS Omega. 2020. V. 5. P. 4542–4547. https://doi.org/10.1021/acsomega.9b03877
  44. Trofimova T.V., Saikova S.V., Panteleeva M.V., Pashkov G.L., Bondarenko G.N. Anion-Exchange Synthesis of Copper Ferrite Powders // Glass Ceram. 2018. V. 75. P. 74–79. https://doi.org/10.1007/s10717-018-0032-7
  45. Saikova S.V., Kirshneva E.A., Panteleeva M.V., Pikurova E.V., Evsevskaya N.P. Production of Gadolinium Iron Garnet by Anion Resin Exchange Precipitation // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1191–1198. https://doi.org/10.1134/S0036023619100127
  46. Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. федер. ун-т, 2018. 198 с.
  47. Finch G.I., Sinha A.P.B., Sinha K.P. Crystal Distortion in Ferrite-Manganites // Proc. R. Soc. A Math. Phys. Eng. Sci. 1957. V. 242. P. 28–35. https://doi.org/10.1098/rspa.1957.0151
  48. Balagurov A.M., Bobrikov I.A., Maschenko M.S., Sangaa D., Simkin V.G. Structural Phase Transition in CuFe2O4 Spinel // Crystallogr. Rep. 2013. V. 58. P. 710–717. https://doi.org/10.1134/S1063774513040044
  49. Павликов А.Ю., Сайкова С.В., Самойло А.С., Карпов Д.В., Новикова С.А. Синтез наночастиц оксида меди(II) методом анионообменного осаждения и получение стабильных гидрозолей на их основе // Журн. неорган. химии. 2024. № 2. С. 245–257. https://doi.org/10.31857/S0044457X24020121
  50. Cudennec Y., Lecerf A. The Transformation of Cu(OH)2 into CuO, Revisited // Solid State Sci. 2003. V. 5. P. 1471. https://doi.org/10.1016/j.solidstatesciences. 2003.09.009
  51. Singh D.P., Ojha A.K., Srivastava O.N. Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheetlike) Nanostructures by Simple Wet Chemical Route // J. Mater. Chem. C. 2009. V. 113. P. 3409. https://doi.org/10.1021/jp804832g
  52. Vaseem M., Hong A.R., Kim R.T. et al. Copper Oxide Quantum Dot Ink for Inkjet-Driven Digitally Controlled High Mobility Field Effect Transistors // J. Mater. Chem. C. 2013. V. 1. P. 2112. https://doi.org/10.1039/C3TC00869J
  53. Xie L., Qian W., Yang S., Sun J., Gong T. A Facile and Green Synthetic Route for Preparation of Heterostructure Fe3O4@Au Nanocomposites // MATEC Web Conf. EDP Sci. 2017. V. 88. P. 02001. https://doi.org/10.1051/matecconf/20178802001
  54. Li Z.H., Bai J.H., Zhang X. et al. Facile Synthesis of Au Nanoparticle-Coated Fe3O4 Magnetic Composite Nanospheres and Their Application in SERS Detection of Malachite Green // Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 2020. V. 241. P. 118532. https://doi.org/10.1016/j.saa.2020.118532
  55. Liu X., Yang X., Li K. et al. Fe3O4@Au Sers Tags-Based Lateral Flow Assay for Simultaneous Detection of Serum Amyloid A and C-Reactive Protein in Unprocessed Blood Sample // Sens. Actuators B: Chem. 2020. V. 320. P. 128350. https://doi.org/10.1016/j.snb.2020.128350
  56. Chen Y., Zhang Y., Kou Q. et al. Enhanced Catalytic Reduction of 4-Nitrophenol Driven by Fe3O4-Au Magnetic Nanocomposite Interface Engineering: from Facile Preparation to Recyclable Application // Nanomaterials. 2018. V. 8. P. 353. https://doi.org/10.3390/nano8050353
  57. Kheradmand E., Poursalehi R., Delavari H. Optical and Magnetic Properties of Iron-Enriched Fe/Fexoy@Au Magnetoplas-Monic Nanostructures // Appl. Nanosci. 2020. V. 10. P. 1083–1094. https://doi.org/10.1007/s13204-019-01246-4
  58. Huang W.C., Tsai P.J., Chen Y.C. Multifunctional Fe3O4@Au Nanoeggs as Photothermal Agents for Selective Killing of Nosocomial and Antibiotic-Resistant Bacteria // Small. 2009. V. 5. P. 51–56. https://doi.org/10.1002/smll.200801042
  59. Ghorbani M., Mahmoodzadeh F., Nezhad-Mokhtari P., Hamishehkar H. A Novel Polymeric Micelle-Decorated Fe3O4/Au Core–Shell Nanoparticle For pH and Reduction-Responsive Intracellular Co-Delivery of Doxorubicin and 6-Mercaptopurine // New J. Chem. 2018. V. 42. P. 18038–18049. https://doi.org/10.1039/C8NJ03310B
  60. Mikalauskaitė A., Kondrotas R., Niaura G., Jagminas A. Gold-Coated Cobalt Ferrite Nanoparticles via Methionine-Induced Reduction // J. Phys. Chem. C. 2015. V. 119. P. 17398–17407. https://doi.org/10.1021/acs.jpcc.5b03528
  61. Jagminas A., Mažeika K., Kondrotas R. et al. Functionalization of Cobalt Ferrite Nanoparticles by a Vitamin C-Assisted Covering with Gold // Nanomater. Nanotechnol. 2014. V. 4. P. 11. https://doi.org/10.5772/584
  62. Zeng J., Gong M., Wang D. et al. Direct Synthesis of Water-Dispersible Magnetic/Plasmonic Heteronanostructures for Multimodality Biomedical Imaging // Nano Lett. 2019.V. 19. P. 3011–3018. https://doi.org/10.1021/acs.nanolett.9b00171
  63. Saikova S., Pavlikov A., Trofimova T. et al. Hybrid Nanoparticles Based on Cobalt Ferrite and Gold: Preparation and Characterization // Metals. 2021. V. 11. P. 705. https://doi.org/10.3390/met11050705
  64. Saykova D., Saikova S., Mikhlin, Y., Panteleeva M., Ivantsov R., Belova E. Synthesis and Characterization of Core–Shell Magnetic Nanoparticles NiFe2O4@Au // Metals. 2020. V. 10. P. 1075. https://doi.org/10.3390/met10081075
  65. Сайкова С.В., Немкова Д.И., Пикурова Е.В., Самойло А.С. Применение анионообменного осаждения для получения нанопорошка феррита никеля, модифицированного плазмонными частицами // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1011–1020. https://doi.org/10.31857/S0044457X23600160
  66. Kim G., Weiss S.J., Levine R.L. Methionine Oxidation and Reduction in Proteins // Biochim. Biophys. Acta. 2014. V. 1840. P. 901–905. https://doi.org/10.1016/j.bbagen.2013.04.038
  67. Glišić B.Đ., Djuran M.I., Stanić Z.D. et al. Oxidation of Methionine Residue in Gly-Met Dipeptide Induced by [Au(En)Cl2]+ and Influence of the Chelated Ligand on the Rate of this Redox Process // Gold Bull. 2014. V. 47. P. 33–40. https://doi.org/10.1007/s13404-013-0108-7
  68. Vujačić A.V., Savić J.Z., Sovilj S.P. et al. Mechanism of Complex Formation Between [Aucl4]− and L-Methionine // Polyhedron. 2009. V. 28. № 3. P. 539–599. https://doi.org/10.1016/j.poly.2008.11.045
  69. Natile G., Bordignon E., Cattalini L. Chloroauric Acid as Oxidant Stereospecific Oxidation of Methionine to Methionine Sulfoxide // Inorg. Chem. 1976. V. 15. № 1. P. 246–248. https://doi.org/10.1021/ic50155a054
  70. Miao C., Jia P., Luo C. et al. The Size-Dependent in vivo Toxicity of Amorphous Silica Nanoparticles: A Systematic Review // Ecotoxicol. Environ. Saf. 2024. V. 271. P. 115910. https://doi.org/10.1016/j.ecoenv.2023.115910
  71. Dong X., Wu Z., Li X., Xiao L., Yang M. et al. The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies // Int. J. Nanomed. 2020. V. 15. P. 9089–9113. https://doi.org/10.2147/IJN.S276105
  72. Huang Y.-W., Cambre M., Lee H.-J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms // Int. J. Mol. Sci. 2017. V. 18. P. 2702. https://doi.org/10.3390/ijms18122702
  73. Baek M., Kim M.K., Cho H.J. et al. Factors Influencing the Cytotoxicity of Zinc Oxide Nanoparticles: Particle Size and Surface Charge // J. Phys. Conf. Ser. 2011. V. 304. P. 012044. https://doi.org/10.1088/1742-6596/304/1/012044
  74. Salleh A., Naomi R., Utami N.D., Mohammad A.W., Mahmoudi E., Mustafa N., Fauzi M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action // Nanomaterials. 2020. V. 10. P. 1566. https://doi.org/10.3390/nano10081566
  75. Kędziora A., Speruda M., Krzyżewska E., Rybka J., Łukowiak A., Bugla-Płoskońska G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents // Int. J. Mol. Sci. 2018. V. 19. P. 444. https://doi.org/10.3390/ijms19020444

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM image (a), electron microdiffraction (b), and size distribution diagrams of CuFe2O4 NPs (c).

Baixar (136KB)
3. Fig. 2. X-ray radiographs of CuFe2O4 (a) and CuO (b) (black lines), the results of Rietveld profile refinement (red lines) and the difference curve (light grey lines).

Baixar (173KB)
4. Fig. 3. SEM image (a), electron microdiffraction (b), as well as diagrams of CuO NA distribution along the length (c) and thickness (d).

Baixar (269KB)
5. Fig. 4. Overview XRD spectrum (a), XRD spectra of S 2p (b) and Au 4f (c) of CuFe2O4/Au NAs.

Baixar (203KB)
6. Fig. 5. SEM images (a, c, e) and electron microdiffraction patterns (b, d, f) of CuFe2O4/Au (a, b) and CuO/Au wafers without CuO calcination (c, d) and after CuO calcination (e, f).

Baixar (266KB)
7. Fig. 6. EDRS of CuO/Au LFs without CuO calcination (a) and after CuO calcination (b).

Baixar (90KB)
8. Fig. 7. X-ray radiographs of CuFe2O4/Au (a) and CuO/Au without CuO calcination (b), after CuO calcination (c), as well as the results of Rietveld profile refinement (red lines) and the difference curve (light grey lines).

Baixar (196KB)
9. Fig. 8. Growth inhibition zones of test cultures of B. subtilis (a-e) and E. coli (e-k) by CuFe2O4 (a, f), CuFe2O4/Au (b, g), CuO (c, h), CuO/Au (d, i) and CuO (e, k) after calcination: 1 - 100, 2 - 50, 3 - 25, 4 - 12.5 mg/ml.

Baixar (249KB)
10. Fig. 9. Antibacterial activity of CuFe2O4, CuFe2O4/Au, CuO, CuO/Au and CuO nanoparticles (after calcination) on test cultures of B. subtilis and E. coli.

Baixar (195KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024