Details of modelling the non-stationary thermal structure of an axially symmetric protoplanetary disk

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper provides a model for simulating the non-stationary thermal structure of protoplanetary disk in axial symmetry. The model is based on the widely used approach of splitting the radiation field into stellar and intrinsic thermal radiation of the medium. The heating by stellar radiation is calculated by the ray tracing method, while the well-known diffusion approximation with a flux limiter (FLD approach) is used to treat the thermal radiation. To solve the resulting system of linear equations, a modification to Gauss method is proposed, which allows to speed up the calculations by a factor of ten compared to the widely adopted GMRES method. This model has been used to calculate the steady-state thermal structure of two disks, including those with the parameters of the EX Lup system. A detailed analysis of the simulation results has been performed. Comparison with the results of more accurate methods has allowed to identify the main shortcomings of the model related to the ignoring of light scattering and to the diffusion nature of the FLD approximation. It is shown that the disk thermal structure calculated with the FLD approximation evolves according to analytical estimates of the characteristic thermal time.

作者简介

Ya. Pavlyuchenkov

Institute of Astronomy of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pavyar@inasan.ru
俄罗斯联邦, Moscow

参考

  1. P. J. Armitage, arXiv:1509.06382 [astro-ph.SR] (2015).
  2. G. Lesur, M. Flock, B. Ercolano, M. Lin, et al., in Protostars and Planets VII, Proc. of a conference held 10–15 April 2023 at Kyoto, Japan; edited by S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, and M. Tamura, ASP Conf. Ser. 534, 465 (2023).
  3. P. D'Alessio, J. Canto, N. Calvet, and S. Lizano, 500(1), 411 (1998), arXiv:astro-ph/9806060.
  4. S. A. Balbus and J. F. Hawley, Rev. Modern Physics 70(1), 1 (1998).
  5. A. M. Skliarevskii, Ya. N. Pavlyuchenkov, and E. I. Vorobyov, Astron. Rep. 65(3), 170 (2021), arXiv:2104.10787 [astro-ph.EP].
  6. K. Kratter and G. Lodato, Ann. Rev. Astron. Astrophys. 54, 271 (2016), arXiv:1603.01280 [astro-ph.SR].
  7. P. Woitke, I. Kamp, and W. F. Thi, Astron. and Astrophys. 501(1), 383 (2009), arXiv:0904.0334 [astro-ph.EP].
  8. R. Teyssier and B. Commerçon, Frontiers in Astron. and Space Sci. 6, id. 51 (2019), arXiv:1907.08542 [astro-ph.IM].
  9. R. Wünsch, Frontiers in Astron. and Space Sci. 11, id. 1346812 (2024), arXiv:2403.05410 [astro-ph.IM].
  10. C. D. Levermore and G. C. Pomraning, 248(1), 321 (1981).
  11. W. Kley, B. Bitsch, and H. Klahr, Astron. and Astrophys. 506(2), 971 (2009), arXiv:0908.1863 [astro-ph.EP].
  12. R. Kuiper, H. W. Yorke, and N. J. Turner, 800(2), id. 86 (2015), arXiv:1412.6528 [astro-ph.SR].
  13. Y.-N. Lee, S. Charnoz, and P. Hennebelle, Astron. and Astrophys. 648, id. A101 (2021), arXiv:2102.07963 [astro-ph.EP].
  14. Y. N. Pavlyuchenkov, L. A. Maksimova, and V. V. Akimkin, Astron. Rep. 66(9), 800 (2022), arXiv:2211.04896 [astro-ph.EP].
  15. R. Kuiper, H. Klahr, C. Dullemond, W. Kley, and T. Henning, Astron. and Astrophys. 511, id. A81 (2010), arXiv:1001.3301 [astro-ph.SR].
  16. M. Flock, S. Fromang, M. González, and B. Commerçon, Astron. and Astrophys. 560, id. A43 (2013), arXiv:1310.5865 [astro-ph.EP].
  17. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, 217, 425 (1977).
  18. L. Testi, T. Birnstiel, L. Ricci, S. Andrews, et al., in Protostars and Planets VI, edited by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Tucson: University of Arizona Press, 2014), pp. 339, arXiv:1402.1354 [astro-ph.SR].
  19. S. M. Andrews, Ann. Rev. Astron. Astrophys. 58, 483 (2020), arXiv:2001.05007 [astro-ph.EP].
  20. Y. Saad and M. H. Schultz, SIAM J. Sci. and Stat. Comp. 7(3), 856 (1986), ://doi.org/10.1137/0907058 .
  21. Á. Kóspál, P. Ábrahám, T. Csengeri, U. Gorti, et al. , Astrophys. J. Letters 821(1), id. L4 (2016), arXiv:1603.02855 [astro-ph.SR].
  22. Y. N. Pavlyuchenkov, D. S. Wiebe, V. V. Akimkin, M. S. Khramtsova, and T. Henning, Monthly Not. Roy. Astron. Soc. 421(3), 2430 (2012), arXiv:1201.0642 [astro-ph.GA].
  23. C. P. Dullemond, A. Juhasz, A. Pohl, F. Sereshti, R. Shetty, T. Peters, B. Commercon, and M. Flock, RADMC-3D: A multi-purpose radiative transfer tool, Astrophysics Source Code Library, record ascl:1202.015 (2012).
  24. J. C. Hayes and M. L. Norman, Astrophys. J. Supp. 147(1), 197 (2003), arXiv:astro-ph/0207260.
  25. K. M. Flaherty, A. M. Hughes, K. A. Rosenfeld, S. M. Andrews, E. Chiang, J. B. Simon, S. Kerzner, and D. J. Wilner, Astrophys. J. 813(2), id. 99 (2015), arXiv:1510.01375 [astro-ph.SR].
  26. C. Pinte, F. Ménard, G. Duchêne, T. Hill, et al., Astron. and Astrophys. 609, id. A47 (2018), arXiv:1710.06450 [astro-ph.SR].
  27. A. Isella, J. Huang, S. M. Andrews, C. P. Dullemond, et al., Astrophys. J. Letters 869(2), id. L49 (2018), arXiv:1812.04047 [astro-ph.SR] .
  28. C. P. Dullemond, A. Isella, S. M. Andrews, I. Skobleva , and N. Dzyurkevich, Astron. and Astrophys. 633, id. A137 (2020), arXiv:1911.12434 [astro-ph.EP].
  29. Y . N. Pavlyuchenkov, V. V. Akimkin, A. P. Topchieva, and E. I. Vorobyov, Astron. Rep. 67(5), 470 (2023), arXiv:2307.15544 [astro-ph.EP].
  30. J. D. Melon Fuksman, H. Klahr, M. Flock, and A. Mignone, 906(2), id. 78 (2021), arXiv:2005.01785 [astro-ph.EP].

补充文件

附件文件
动作
1. JATS XML

版权所有 © The Russian Academy of Sciences, 2024