Experimental study of the UV irradiation influence on the activation of dust particles of atmosphereless bodies regolith simulators

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The activity of dust particles on airless bodies has been recorded since the early automated missions to the Moon. Since then, numerous theoretical and experimental studies of this effect have been conducted, yet at present, there is no clear understanding of the influence of external factors on the dynamics of this phenomenon. Experimental work has been carried out to determine the contribution of hard UV radiation to the activity of dust particles. It has been shown that the impact of UV radiation significantly affects the dynamics of the particles. The results on determining the conditions for particle detachment from the surface are in line with theoretical calculations.

Texto integral

Acesso é fechado

Sobre autores

I. Kuznetsov

Institute of Space Research of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kia@cosmos.ru
Rússia, Moscow

I. Shashkova

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

А. Lyash

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

А. Poroykov

National Research University “Moscow Power Engineering Institute”

Email: kia@cosmos.ru
Rússia, Moscow

S. Bednyakov

Institute of Space Research of the Russian Academy of Sciences; Moscow State University named after M. V. Lomonosov

Email: kia@cosmos.ru

Scientific Research Institute of Nuclear Physics named after D. V. Skobeltsyn

Rússia, Moscow; Moscow

Е. Kronrod

Institute of Geochemistry and Analytical Chemistry named after V. I. Vernadsky of the Russian Academy of Sciences; Kazan Federal University

Email: kia@cosmos.ru
Rússia, Moscow; Kazan

G. Dolnikov

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

А. Dubov

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

О. Voshchan

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

М. Abdelaal

Institute of Space Research of the Russian Academy of Sciences; National Research University “Moscow Institute of Physics and Technology”

Email: kia@cosmos.ru
Rússia, Moscow; Dolgoprudny

S. Popel

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

Т. Morozova

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

А. Kartasheva

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

P. Stoliarenko

Moscow State University named after M. V. Lomonosov

Email: kia@cosmos.ru

Faculty of Space Research

Rússia, Moscow

Y. Tian

National Research University “Moscow Power Engineering Institute”

Email: kia@cosmos.ru
Rússia, Moscow

А. Zakharov

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

L. Zelenyi

Institute of Space Research of the Russian Academy of Sciences

Email: kia@cosmos.ru
Rússia, Moscow

Bibliografia

  1. J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, S. Sture, Rev. Geophys. 45, RG2006 (2007).
  2. D. R. Criswell Photon and Particle Interactions with Surfaces in Space (Springer, New York, edited by R. J. L. Grard, pp. 545–556, 1973).
  3. J. J. Rennilson and D. R. Criswell, Moon 10 (1974).
  4. H. Zook and J. McCoy, Geophys. Res. Lett. 18, 11 (1991).
  5. J. R. Gaier The Impact of Lunar Dust on Human Exploration (Cambridge Scholars Publishing, edited by J. S. Levine, pp. 67–87, 2021).
  6. S. I. Popel, L. M. Zelenyi, A. P. Golub’, A. Yu. Dubinskii, Planet. Space Sci. 156 (2018).
  7. X. Wang, M. Horányi, S. Robertson, J. Geophys. Res. 114, A05103 (2009).
  8. N. Ding, J. Wang, J. Polansky, IEEE Trans. Plasma Sci. 41, 12 (2013).
  9. T. M. Flanagan and J. Goree, Phys. Plasmas 13, 12 (2006).
  10. C. M. Hartzell and D. J. Scheeres, J. Geophys. Res. 118 (2013).
  11. T. E. Sheridan, J. Goree, Y. T. Chiu, R. L. Rairden, J. A. Kiess-ling, J. Geophys. Res. 97, A3 (1992).
  12. X. Wang, M. Horányi, S. Robertson, J. Geophys. Res. 115, A11102 (2010).
  13. X. Wang, M. Horányi, S. Robertson, Planet. Space Sci. 59, 14 (2011).
  14. X. Wang, J. Schwan, N. Hood, H. W. Hsu, E. Grün, and M. Hor’anyi, JoVE 134, e57072 (2018).
  15. А.Shu, A. Collette, K. Drake, E. Gün, M. Hor’anyi, S. Kempf, A. Mocker, T. Munsat, P. Northway, R. Srama, Z. Sternovsky, E. Thomas, Rev. Sci. Instrum. 83, 075108 (2012).
  16. I.Kuznetsov, S. L. G. Hess, A. V. Zakharov, F. Cipriani, E. Seran, S. I. Popel, E. A. Lisin, O. F. Petrov, G. G. Dolnikov, A. N. Lyash, S. I. Kopnin, Planet. Space Sci. 156, 62 (2018).
  17. J. Gu, X. Qian, Y. Liu, Q. Wang, Y. Zhang, X. Ruan, X. Deng, Y. Lu, J. Song, H. Zhang, Y. Dong, M. Wei, S. Li, W. H. Wang, Z. Zou, M. Yang, W. Yao, Research Square, (preprint), https://doi.org/10.21203/rs.3.rs-2923910/v1 (2023).
  18. N. C. Orger, K. Toyoda, H. Masui, M. Cho, Adv. Space Res. 68, 3 (2021).
  19. А.Carroll, N. Hood, R. Mike, X. Wang, H.-W. Hsu, M. Horányi, Icarus 352 (2020).
  20. Dust accelerator laboratory (dal), URL: https://impact.colorado.edu/facilities.html.
  21. J. I. Samaniego, X. Wang, L. Andersson, D. Malaspina, R. E. Ergun, and M. Hor’anyi, J. Geophys. Res. 123, 6054 (2018).
  22. N. Hood, A. Carroll, R. Mike, X. Wang, J. Schwan, H.-W. Hsu, and M. Hor’anyi, Geophys. Res. Lett. 45, 13206–13212 (2018).
  23. N. C. Orger, K. Toyoda, H. Masui, and M. Cho, Adv. Space Res. 63, 3270 (2019).
  24. А.Champlain, J. C. Mat’eo-V’elez, J. F. Roussel, S. Hess, P. Sarrailh, G. Murat, J. P. Chardon, and A. Gajan, J. Geophys. Res. 121, 103 (2016).
  25. А.V. Zakharov, A. Yu. Poroykov, S. A. Bednyakov, A. N. Lyash, I. A. Shashkova, I. A. Kuznetsov, G. G. Dolnikov, Measurement 171, 108831 (2021).
  26. I.W. Carrier, G. R. Olhoeft, and W. Mendell The Lunar Sourcebook (Cambridge University Press, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 475–594, 1991).
  27. J. W. Freeman and M. Ibrahim, Moon 8 (1975).
  28. J. S. Halekas, G. T. Delory, R. P. Lin, T. J. Stubbs and W. M. Farrell, J. Geophys. Res. 113, A09102 (2008).
  29. С.N. Hartzell and D. J. Scheeres, Planet. Space Sci. 59 (2011).
  30. С.N. Hartzell, Aerospace Engineering Sciences Graduate Theses & Dissertations 48 (2012).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diagram of the vacuum setup (left), diagram of the experiment for studying dust particle levitation (right). Designations: 1 — CMOS cameras, 2 — mirror, 3 — expanded laser beam, 4 — non-conductive substrate, 5 — conductive substrate, 6 — steel mesh, 7 — dust particles, 8 — vacuum chamber; 9 — UV radiation source; 10 — voltage source.

Baixar (153KB)
3. Fig. 2. Photographs of particles (under a microscope) used in experiments: a) SiO2 (40÷50 μm); b) mica (15 μm); c) Al2O3 (10 μm).

Baixar (512KB)
4. Fig. 3. Diagram of visualization of dust particle dynamics [25].

Baixar (103KB)
5. Fig. 4. Electrical diagram of the experiment. The polarity of the potential applied to the electrodes can be changed depending on the experimental objectives.

Baixar (61KB)
6. Fig. 5. Photograph of the polyamide mold, electrode, and mesh in assembled form. The test sample is placed on a dielectric substrate. Above it is the PS1 mesh. On the underside of the dielectric substrate — fiberglass laminate — is the PV1 electrode. The mirror is needed to redirect the laser plane into the measurement volume.

Baixar (215KB)
7. Fig. 6. a) Distribution of electrostatic field strength when applying a potential of 4300 V to electrode PV1 and connecting the mesh (electrode PS1) to 0; b) Dependence of electrostatic field strength near electrodes PV1 (blue) and PS1 (red) on the potential applied to electrode PV1.

Baixar (275KB)
8. Fig. 7. Diagram of charge values recorded and processed for moving SiO2 particles (40÷50 μm) exposed to electrostatic field and UV radiation without prior exposure. Blue markers indicate particles exposed only to the electrostatic field, red — particles illuminated with UV radiation and simultaneously exposed to the electrostatic field.

Baixar (173KB)
9. Fig. 8. Diagram of the quantity and charge values of moving mica particles (15 μm) exposed to electrostatic field and UV radiation. Blue markers indicate particles exposed only to the electrostatic field, red — particles illuminated with UV radiation with intensity up to 10 mW and simultaneously exposed to the electrostatic field.

Baixar (109KB)
10. Fig. 9. Diagram of the quantity of recorded Al2O3 particles (10 μm) and their charge values. Blue markers indicate particles exposed only to the electrostatic field, red — particles illuminated with UV radiation with flux up to 10 mW and simultaneously exposed to the electrostatic field.

Baixar (119KB)
11. Fig. 10. Comparison of the required value of electric field strength for particle detachment from the surface obtained from theoretical modeling [30, Fig. 3.2] and experimental data for Al2O3 particles of 10 μm (orange with UV exposure and yellow without UV exposure), mica particles of 15 μm (blue with UV exposure and pink without UV exposure), and SiO2 particles of 40 to 50 μm (green rectangle with UV exposure and black without UV exposure).

Baixar (272KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024