Suboptimal Robust Stabilization of an Unknown Autoregressive Object with Uncertainty and Offset External Perturbation
- Authors: Sokolov V.F.1
-
Affiliations:
- Komi Research Center of the Ural Branch of the Russian Academy of Sciences
- Issue: No 6 (2023)
- Pages: 26-48
- Section: Nonlinear systems
- URL: https://gynecology.orscience.ru/0005-2310/article/view/646760
- DOI: https://doi.org/10.31857/S0005231023060028
- EDN: https://elibrary.ru/CRYBQU
- ID: 646760
Cite item
Abstract
In this paper, the problem of suboptimal stabilization of an object with discrete time, output and control uncertainties, and bounded external perturbation is considered. The autoregressive nominal model coefficients, uncertainty amplification coefficients, norm and external disturbance offset are assumed to be unknown. The quality indicator is the worst-case asymptotic upper bound of the output modulus of the object. The solution of the problem in conditions of non-identifiability of all unknown parameters is based on the method of recurrent target inequalities and optimal online estimation, in which the quality index of the control problem serves as an identification criterion. A non-linear replacement of the unknown parameter perturbations that reduces the optimal online estimation problem to a fractional linear programming problem is proposed. The performance of adaptive suboptimal control is illustrated by numerical simulation results.
About the authors
V. F. Sokolov
Komi Research Center of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: sokolov@ipm.komisc.ru
Syktyvkar, Russia
References
- Rohrs C., Valavani L., Athans M., Stein G. "Robustness of adaptive control algorithms in the presence of unmodeled dynamics" // The 21st IEEE Conference on Decision and Control. 1982. P. 3-11. https://doi.org/10.1109/CDC.1982.268392
- Rohrs C., Valavani L., Athans M., Stein G. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics // IEEE Transactions Automatic Control. 1985. V. 30. No. 9. P. 881-889. https://doi.org/10.1109/TAC.1985.1104070
- Zhou K., Doyle J.C., Glover K. Robust and Optimal Control. Upper Saddle River. New Jersey: Prentice-Hall, 1996.
- Annaswamy A.A., Fradkov A.L. A historical perspective of adaptive control and learning // Annual Reviews in Control. 2021. V. 52. P. 18-41. https://doi.org/10.1016/j.arcontrol.2021.10.014
- Narendra K., Annaswamy A. Stable adaptive systems. Dover, 2005.
- Ioannou P.A., Sun J. Robust adaptive control. PTR Prentice-Hall, NJ: Upper Saddle River, 1996.
- Smith R.S., Dahleh M. (Eds.) The Modeling of Uncertainty in Control Systems (Lecture Notes in Control and Information Sciences). V. 192. London, U.K.: Springer-Verlag, 1994.
- Ljung L., Guo L. The Role of Model Validation for Assessing the Size of the Unmodeled Dynamics // IEEE Trans. Automat. Control. 1997. V. 42. P. 230-1239. https://doi.org/10.1109/9.623084
- Lamnabhi-Lagarrigue F., Annaswamy A., Engell S., Isaksson A., Khargonekar P., Murray R., Nijmeijer H., Samad T., Tilbury D., Van den Hof P. Systems & Control for the future of humanity, research agenda: Current and future roles, impact and grand challenges // Annual Reviews in Control. 2017. V. 43. P. 1-64. https://doi.org/10.1016/j.arcontrol.2017.04.001
- Khammash M., Pearson J.B. Performance robustness of discrete-time systems with structured uncertainty //IEEE Trans. Automat. Control. 1991. V. AC-36. No. 4. P. 398-412. https://doi.org/10.1109/9.75099
- Khammash M., Pearson J.B. Analysis and design for robust performance with structured uncertainty // Syst. Control Lett. 1993. V. 20. No. 3. P. 179-187.
- Khammash M.H. Robust steady-state tracking // IEEE Trans. Automat. Control. 1995. V. 40. No. 11. P. 1872-1880. https://doi.org/10.1109/9.471208
- Khammash M.H. Robust Performance: Unknown Disturbances and Known Fixed Inputs // IEEE Trans. Automat. Control. 1997. V. 42. No. 12. P. 1730-1734. https://doi.org/10.1109/9.650028
- Соколов В.Ф. Асимптотическое робастное качество дискретной системы слежения в fl1-метрике // АиТ. 1999. № 1. С. 101-112.
- Соколов В.Ф. Робастное управление при ограниченных возмущениях. Сыктывкар: Коми научный центр УрО РАН. 2011.
- Соколов В.Ф. Адаптивное робастное управление дискретным скалярным объектом в fl1-постановке // АиТ. 1998. № 3. С. 107-131.
- Sokolov V.F. Adaptive fl1 robust control for SISO system // Systems Control Lett. 2001. V. 42. No. 5. P. 379-393. https://doi.org/10.1016/S0167-6911(00)00110-9
- Guo L. Feedback and uncertainty: Some basic problems and results // Annual Reviews in Control. 2020 V. 49. P. 27-36. https://doi.org/10.1016/j.arcontrol.2020.04.001
- Фомин В.Н., Фрадков А.Л., Якубович В.А. Адаптивное управление динамическими объектами. М.: Наука. 1981.
- Sokolov V.F. Control-oriented model validation and errors quanti cation in the fl1 setup // IEEE Trans. Automat. Control. 2005. T. 50. No. 10. P. 1501-1508. https://doi.org/10.1109/TAC.2005.856646
- Sokolov V.F. Model Evaluation for Robust Tracking Under Unknown Upper Bounds on Perturbations and Measurement Noise // IEEE Trans. Automat. Control. 2014. T. 59. No. 2. P. 483-488. https://doi.org/10.1109/TAC.2013.2273295
- Соколов В.Ф. Моделирование системы субоптимального робастного слежения при неизвестных верхних границах внешних и операторных возмущений // АиТ. 2014. № 5. С. 115-136.
- Соколов В.Ф. Задачи адаптивного оптимального управления дискретными системами с ограниченным возмущением и линейными показателями качества // АиТ. 2018. № 6. С. 155-171.
- Sokolov V.F. fl1 robust performance of discrete-time systems with structured uncertainty // Syst. Control Lett. 2001. V. 42. No. 5. P. 363-377. https://doi.org/10.1016/S0167-6911(00)00109-2
- Boyd S., Vandenberghe L. Convex optimization. N.Y.: Cambridge University Press, 2004.
- Guo L. Self-Convergence of Weighted Least-Squares with Applications to Stochastic Adaptive Control // IEEE Trans. Automat. Control. 1996 V. 41. No. 1. P. 79-89. https://doi.org/10.1109/9.481609
- Guo L., Chen H.-F. The ˚Astro¨m-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers // IEEE Trans. Autom. Control. 1991. V. 36. No. 7. P. 802-812.
- Поляк Б.Т., Тремба А.А., Хлебников М.В., Щербаков П.С., Смирнов Г.В. Большие отклонения в линейных системах при ненулевых начальных условиях // АиТ. 2015. № 6. С. 18-41.
- Polyak D.T., Shcherbakova P.S., Smirnov G. Peak e ects in stable linear di erence equations // J. Di. Equat. and Appl. 2018. V. 24. No 9. P. 1488-1502. https://doi.org/10.1080/10236198.2018.1504930
- Dahleh M.A., Doyle J.C. From Data to Control. Lecture Notes in Control and Information Sciences. 192. The modeling of Uncertainty in Control Systems. Springer Verlag, 1994. P. 61-63.
Supplementary files
