The Administration of Phospholipids with Polyunsaturated Fatty Acids in the Tail Groups Makes It Possible to Prevent the Decrease of Sperm Motility of the Fruit Fly Drosophila melanogaster in the Early Period of Readaptation after Space Flight
- 作者: Ogneva I.V1, Gogichaeva K.K1, Zhdankina Y.S1, Kotov O.V1
-
隶属关系:
- SSC RF Institute of Biomedical Problems, Russian Academy of Sciences
- 期: 卷 69, 编号 6 (2024)
- 页面: 1206-1213
- 栏目: Cell biophysics
- URL: https://gynecology.orscience.ru/0006-3029/article/view/676138
- DOI: https://doi.org/10.31857/S0006302924060079
- EDN: https://elibrary.ru/NLPTEL
- ID: 676138
如何引用文章
详细
The aim of the study was the attempt to prevent the decrease in sperm motility of the fruit fly Drosophila melanogaster that occurs in the early period of readaptation after space flight by adding phospholipids with polyunsaturated fatty acids in the tail groups (essential phospholipids) to the nutrient medium. The study was carried out as part of space flights on board the russian segment of the International space station during the period September 15, 2023 – September 27, 2023 (ISS-69) and March 23, 2024 – April 6, 2024 (ISS-70). The content of cytoskeletal proteins in the testes was determined by Western blotting and sperm motility by video recording and subsequent analysis. The results of the study show that modification of the nutrient medium by adding essential phospholipids leads to a decrease in cholesterol content and an increase in actin content, which prevents a decrease in tubulin content and a decrease in the speed of movement of fruit fly sperm in the early period of readaptation (up to 16 hours) after space flight. The data obtained, on the one hand, demonstrate a possible mechanism for triggering mechanotransduction, and on the other, allow us to propose essential phospholipids as one of the means of protection against negative changes associated with changes in the gravity field acting on the cell.
作者简介
I. Ogneva
SSC RF Institute of Biomedical Problems, Russian Academy of Sciences
Email: iogneva@yandex.ru
Moscow, Russia
K. Gogichaeva
SSC RF Institute of Biomedical Problems, Russian Academy of SciencesMoscow, Russia
Yu. Zhdankina
SSC RF Institute of Biomedical Problems, Russian Academy of SciencesMoscow, Russia
O. Kotov
SSC RF Institute of Biomedical Problems, Russian Academy of SciencesMoscow, Russia
参考
- Ogneva I. V. Single cell in a gravity field. Life (Basel), 12 (10), 1601 (2022). doi: 10.3390/life12101601
- Schatten H., Lewis M. L., and Chakrabarti A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut., 49 (3-10), 399-418 (2001). doi: 10.1016/s0094-5765(01)00116-3
- Uva B. M., Masini M. A., Sturla M., Prato P., Passalacqua M., Giuliani M., Tagliafierro G., and Strollo F. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res., 934 (2), 132139 (2002). doi: 10.1016/s0006-8993(02)02415-0
- Gaboyard S., Blanchard M. P., Travo C., Viso M., Sans A., and Lehouelleur J. Weightlessness affects cytoskeleton of rat utricular hair cells during maturation in vitro. Neuroreport, 13 (16), 2139-2142 (2002). doi: 10.1097/00001756-200211150-00030
- Kacena M. A., Todd P. and Landis W. J. Osteoblasts subjected to spaceflight and simulated space shuttle launch conditions. In Vitro Cell Dev. Biol. Anim., 39 (10), 454-459 (2003). doi: 10.1290/1543-706X(2003)039<0454:OSTSAS>2.0. CO;2
- Crawford-Young S. J. Effects of microgravity on cell cytoskeleton and embryogenesis. Int. J. Dev. Biol., 50 (2-3), 183-191 (2006). doi: 10.1387/ijdb.052077sc
- Corydon T. J., Kopp S., Wehland M., Braun M., Schutte A., Mayer T., Halsing T., Oltmann H., Schmitz B., Hemmersbach R., and Grimm D. Alterations of the cytoskeleton in human cells in space proved by lifecell imaging. Sci. Rep., 6, 20043 (2016). doi: 10.1038/srep20043
- Thiel C. S., de Zolicourt D., Tauber S., Adrian A., Franz M., Simmet D. M., Schoppmann K., Hauschild S., Krammer S., Christen M., Bradacs G., Paulsen K., Wolf S. A., Braun M., Hatton J., Kurtcuoglu V., Franke S., Tanner S., Cristoforetti S., Sick B., Hock B., and Ullrich O. Rapid adaptation to microgravity in mammalian macrophage cells. Sci. Rep., 7 (1), 43 (2017). doi: 10.1038/s41598-017-00119-6
- Thiel C. S., Tauber S., Seebacher C., Schropp M., Uhl R., Lauber B., Polzer J., Neelam S., Zhang Y., and Ullrich O. Real-time 3D high-resolution microscopy of human cells on the international space station. Int. J. Mol. Sci., 20 (8), 2033 (2019). doi: 10.3390/ijms20082033
- Thiel C. S., Tauber S., Lauber B., Polzer J., Seebacher C., Uhl R., Neelam S., Zhang Y., Levine H., and Ullrich O. Rapid morphological and cytoskeletal response to microgravity in human primary macrophages. Int. J. Mol. Sci., 20 (10), 2402 (2019). doi: 10.3390/ijms20102402
- Serova L. V. and Denisova L. A. The effect of weightlessness on the reproductive function of mammals. Physiologist, 25 (6), S9-S12 (1982).
- Serova L. V., Denisova L. A., and Baikova O. V. The effect of microgravity on the reproductive function of male-rats. Physiologist, 32 (1 Suppl.), S29-S30 (1989).
- Tash J. S., Johnson D. C., and Enders G. C. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats. J. Appl. Physiol., (92 (3), 1191-1198 (2002). doi: 10.1152/japplphysiol.00931.2001
- Usik M. A. and Ogneva I. V. Cytoskeleton structure in mouse sperm and testes after 30 days of hindlimb unloading and 12 hours of recovery. Cell. Physiol. Biochem., 51 (1), 375-392 (2018). doi: 10.1159/000495235
- Ogneva I. V., Usik M. A., Loktev S. S., Zhdankina Yu. S., Biryukov N. S., Orlov O. I., and Sychev V. N. Testes and duct deferens of mice during space flight: cytoskeleton structure, sperm-specific proteins and epigenetic events. Sci. Rep., 9, 9730 (2019). doi: 10.1038/s41598-019-46324-3
- Ogneva I. V. Mouse and fly sperm motility changes differently under modelling microgravity. Curr. Issues Mol. Biol., 43 (1), 590-604 (2021). doi: 10.3390/cimb43020043
- Parfyonov G. P., Platonova R. N., Tairbekov M. G., Zhvalikovskaya V. P., Mozgovaya I. E., Rostopshina A. V., and Rozov A. N. Biological experiments carried out aboard the biological satellite Cosmos-936. Life Sci. Space Res., 17, 297-299 (1979). doi: 10.1016/B978-0-08-023416-8.50044-1
- Marco R., Bengura A., Sanchez J., and de Juan E. Effects of the space environment on Drosophila melanogaster development. Implications of the IML-2 experiment. J. Biotechnol., 47 (2-3), 179-189 (1996). doi: 10.1016/0168-1656(96)01408-3
- Ogneva I. V., Belyakin S. N., and Sarantseva S. V. The development of Drosophila melanogaster under different duration space flight and subsequent adaptation to earth gravity. PLoS One, 11 (11), e0166885 (2016). doi: 10.1371/journal.pone.0166885
- Ogneva I. V., Zhdankina Y. S., and Kotov O. V. Sperm of fruit fly Drosophila melanogaster under space flight. Int J Mol Sci, 23 (14), 7498 (2022). doi: 10.3390/ijms23147498
- Ogneva I. V. The Mechanoreception in Drosophila melanogaster oocyte under modeling micro- and hypergravity. Cells, 12 (14), 1819 (2023). doi: 10.3390/cells12141819
- Morachevskaya E., Sudarikova A., and Negulyaev Y. Mechanosensitive channel activity and F-actin organization in cholesterol-depleted human leukaemia cells. Cell Biol. Int., 31 (4), 374-381 (2007). doi: 10.1016/j.cellbi.2007.01.024
- Chubinskiy-Nadezhdin V. I., Negulyaev Y. A., and Morachevskaya E. A. Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem. Biophys. Res. Commun., 412 (1), 80-85 (2011). doi: 10.1016/j.bbrc.2011.07.046
- Jayaraman T., Kannappan S., Ravichandran M. K., and Anuradha C. V. Impact of Essentiale L on ethanol-in-duced changes in rat brain and erythrocytes. Singapore Med. J., 49 (4), 320-327 (2008).
- Harder T. and Simons K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol., 29 (2), 556-562 (1999). doi: 10.1002/(SICI)1521-4141(199902)29:02<556::AID-IMMU556>3.0.CO;2-2
- Brown D. A. and London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem., 275 (23), 17221-17224 (2000). doi: 10.1074/jbc.R000005200
- Brown DA. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda), 21, 430439 (2006). doi: 10.1152/physiol.00032.2006
补充文件
