Control of the Activity of Mobile Elements in Cancer Cells as a Strategy for Anticancer Therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An important direction in cancer prevention is the development of novel strategies that can be used in the treatment by affecting the mechanisms of the regulatory pathways and genomic elements involved in malignant transformation. Strategy proposed in this study is to initiate cell death mechanisms in response to the depletion of the energy resources within a cancer cell due to the uncontrolled spread of mobile genetic elements throughout its genome. The calculation results obtained using a preliminary mathematical model that simulates cellular bioenergetic balance, taking into account the energy consumption for retrotransposition of the mobile elements such as LINE-1 and SINE, show that this scenario is plausible. Intracellular resources undergo a critical redistribution when affecting the genomic defense mechanisms and the LINE-1 transcription rate. This leads to a sharp increase in energy consumption for retrotransposon transcription that causes a significant decrease in the pool of free ATPs in the cell.

About the authors

S. R Pavlov

Peter the Great St. Petersburg Polytechnic University

Saint Petersburg, Russia

V. V Gursky

Peter the Great St. Petersburg Polytechnic University; Ioffe Physical-Technical Institute

Email: gursky@math.ioffe.ru
Saint Petersburg, Russia

M. G Samsonova

Peter the Great St. Petersburg Polytechnic University

Saint Petersburg, Russia

A. A Kanapin

Peter the Great St. Petersburg Polytechnic University

Saint Petersburg, Russia

A. A Samsonova

Peter the Great St. Petersburg Polytechnic University

Saint Petersburg, Russia

References

  1. Moreira D. A., de Lanna C. A., da Cruz J. G. V., and Boroni M. To build or to break: the dual impact of interspersed transposable elements in cancer. In Human Genome Structure, Function and Clinical Considerations, Ed. by L. A. Haddad (N.-Y., Springer, Cham., 2021), pp. 245-273. doi: 10.1007/978-3-030-73151-9_8
  2. Demidov G., Park J., Armeanu-Ebinger S., Roggia C., Faust U., Cordts I., Blandfort M., Haack T. B., Schroeder C., and Ossowski S. Detection of mobile elements insertions for routine clinical diagnostics in targeted sequencing data. Mol. Genet. Genom. Med., 9 (12), e1807 (2021). doi: 10.1002/mgg3.1807
  3. Steely C. J., Russell K. L., Feusier J. E., Qiao Y., Tavtigian S. V., Marth G., and Jorde L.B. Mobile element insertions and associated structural variants in longitudinal breast cancer samples. Sci. Rep., 11 (1), 13020 (2021). doi: 10.1038/s41598-021-92444-0
  4. Solovyov A., Behr J. M., Hoyos D., Banks E., Drong A. W., Zhong J. Z., Garcia-Rivera E., McKerrow W., Chu C., Zaller D. M., Fromer M., and Greenbaum B. D. Mechanism-guided quantification of LINE-1 reveals p53 regulation of both retrotransposition and transcription. BioRxiv, 2023.05.11.539471 (2023). doi: 10.1101/2023.05.11.539471
  5. Pradhan R. K. and Ramakrishna W. Transposons: unexpected players in cancer. Gene, 808, 145975 (2022). doi: 10.1016/j.gene.2021.145975
  6. Burns K.H. Transposable elements in cancer. Nat. Rev. Cancer, 17 (7), 415-424 (2017). doi: 10.1038/nrc.2017.35
  7. Kassiotis G. and Stoye J. P. Immune responses to endogenous retroelements: taking the bad with the good. Nat. Rev. Immunol., 16 (4), 207-219 (2016). doi: 10.1038/nri.2016.27
  8. Ishak C. A. and De Carvalho D. D. Reactivation of endogenous retroelements in cancer development and therapy. Annu. Rev. Cancer Biol., 4 (1), 159-176 (2020). doi: 10.1146/annurev-cancerbio-030419-033525
  9. Leonova K. I., Brodsky L., Lipchick B., Pal M., Novototskaya L., Chenchik A. A., Sen G. C., Komarova E. A., and Gudkov A. V. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl. Acad. Sci. USA, 110 (1), E89-98 (2013). doi: 10.1073/pnas.1216922110
  10. Chiappinelli K. B., Strissel P. L., Desrichard A., Li H., Henke C., Akman B., Hein A., Rote N. S., Cope L. M., Snyder A., Makarov V., Budhu S., Slamon D. J., Wolchok J. D., Pardoll D. M., Beckmann M. W., Zahnow C. A., Merghoub T., Chan T. A., Baylin S. B., and Strick R. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell, 162 (5), 974-986 (2015). doi: 10.1016/j.cell.2015.07.011
  11. Roulois D., Loo Yau H., Singhania R., Wang Y., Danesh A., Shen S. Y., Han H., Liang G., Jones P. A., Pugh T. J., O’Brien C., and De Carvalho D. D. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell, 162 (5), 961-973 (2015). doi: 10.1016/j.cell.2015.07.056
  12. Ishak C. A., Classon M., and De Carvalho D. D. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer, 4 (8), 583-597 (2018). doi: 10.1016/j.trecan.2018.05.008
  13. DeBerardinis R. J. and Chandel N. S. Fundamentals of cancer metabolism. Sci. Adv., 2 (5), e1600200 (2016). doi: 10.1126/sciadv.1600200
  14. Vander Heiden M. G. and DeBerardinis R. J. Understanding the intersections between metabolism and cancer biology. Cell, 168 (4), 657-669 (2017). doi: 10.1016/j.cell.2016.12.039
  15. Fresquet V., Garcia-Barchino M. J., Larrayoz M., Celay J., Vicente C., Fernandez-Galilea M., Larrayoz M. J., Calasanz M. J., Panizo C., Junza A., Han J., Prior C., Fortes P., Pio R., Oyarzabal J., Martinez-Baztan A., Paiva B., Moreno-Aliaga M. J., Odero M. D., Agirre X., Yanes O., Prosper F., and Martinez-Climent J. A. Endogenous retroelement activation by epigenetic therapy reverses the warburg effect and elicits mitochondrial-mediated cancer cell death. Cancer Discov., 11 (5), 1268-1285 (2021). doi: 10.1158/2159-8290.CD-20-1065
  16. Takeshima H., Yoda Y., Wakabayashi M., Hattori N., Yamashita S., and Ushijima T. Low-dose DNA demethylating therapy induces reprogramming of diverse cancer-related pathways at the single-cell level. Clin. Epigenetics, 12 (1), 142 (2020). doi: 10.1186/s13148-020-00937-y
  17. Wagner A. Energy constraints on the evolution of gene expression. Mol. Biol. Evol., 22 (6), 1365-1374 (2005). doi: 10.1093/molbev/msi126
  18. Lane N. and Martin W. The energetics of genome complexity. Nature, 467 (7318), 929-934 (2010). doi: 10.1038/nature09486
  19. Lynch M. and Marinov G. K. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA, 112 (51), 1569015695 (2015). doi: 10.1073/pnas.1514974112
  20. Raveh A., Margaliot M., Sontag E. D., and Tuller T. A model for competition for ribosomes in the cell. J. R. Soc. Interface, 13 (116), 20151062 (2016). doi: 10.1098/rsif.2015.1062
  21. Rogalla P. S., Rudge T. J., and Ciandrini L. An equilibrium model for ribosome competition. Phys. Biol., 17 (1), 015002 (2019). doi: 10.1088/1478-3975/ab4fbc
  22. Vander Heiden M. G., Cantley L. C., and Thompson C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324 (5930), 1029-1033 (2009). doi: 10.1126/science.1160809
  23. Hanahan D. and Weinberg R. A. Hallmarks of cancer: the next generation. Cell, 144 (5), 646-674 (2011). doi: 10.1016/j.cell.2011.02.013
  24. Kasperski A. and Kasperska R. Bioenergetics of life, disease and death phenomena. Theor. Biosci., 137 (2), 155-168 (2018). doi: 10.1007/s12064-018-0266-5
  25. Eguchi Y., Shimizu S., and Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res., 57 (10), 1835-1840 (1997).
  26. Lieberthal W., Menza S. A., and Levine J. S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am. J. Physiol. Renal Physiol., 274 (2), F315-F327 (1998). doi: 10.1152/ajprenal.1998.274.2.f315
  27. Skulachev V. P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis, 11 (4), 473-485 (2006). doi: 10.1007/s10495-006-5881-9
  28. Weiße A. Y., Oyarzún D. A., Danos V., and Swain P. S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA, 112 (9), E1038-E1047 (2015). doi: 10.1073/pnas.1416533112
  29. Thomas P., Terradot G., Danos V., and Weiße A. Y. Sources, propagation and consequences of stochasticity in cellular growth. Nat. Commun., 9 (1), 4528 (2018). doi: 10.1038/s41467-018-06912-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences