Antiviral Activity of the Solutions of Dinitrosyl Iron Complex Delivered to SARS-CoV-2-Infected Syrian Hamsters Placed in a Nose-Only Inhalation Exposure Chamber

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

No differences were found in antiviral action of the solutions of binuclear dinitrosyl iron complexes with glutathione (B-DNIC-GSH) and sodium diethyldithiocarbamate (DETC) delivered sequentially to SARSCoV-2-infected Syrian hamsters in nose-only (the present study) inhalation or whole-body exposure chambers. In a whole-body exposure chamber, the animal became wet and it led only to a decrease in the level of mononuclear DNIC (M-DNIC) with thiol-containing proteins in lungs resulting in diminished EPR signal while the total Band M-DNIC pool remained unchanged. It is suggested that antiviral activity of D-DNICGSH + DETC against SARS-CoV-2 virus is due to nitrosonium cations released from B-DNIC-GSH in its decomposition induced by DETC. Without additional aerosol inhalation delivery of the solutions of DETC to animals, complex with mercaptosuccinate that is less stable than B-DNIC-GSH exerted similar antiviral effect on Syrian hamster model.

About the authors

A. V Shipovalov

State Research Center of Virology and Biotechnology VECTOR

Novosibirsk, Russia

A. F Vanin

N.N. Semenov Federal Research Center for Chemical Physics

Email: vanin@polymer.chph.ras.ru
Moscow, Russia

N. A Tkachev

N.N. Semenov Federal Research Center for Chemical Physics

Moscow, Russia

O. V Pyankov

State Research Center of Virology and Biotechnology VECTOR

Novosibirsk Russia

N. B Asanbaeva

N.N. Vorozhtsov Institute for Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

S. V An’kov

N.N. Vorozhtsov Institute for Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

E. G Bagryanskaya

N.N. Vorozhtsov Institute for Organic Chemistry, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

A. M Baklanov

V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

S. V Valiulin

V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

M. E Stekleneva

V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Шиповалов А. В., Ванин А. Ф., Пьянков О. В., Багрянская Е. Г., Микоян В. Д., Ткачев Н. А., Асанбаева Н. А. и Попкова В. Я. Противовирусная активность катионов нитрозония в отношении SARS-CoV-2 на модели сирийского хомячка. Биофизика, 67, 969-981 (2022). doi: 10.31857/S0006302922050167
  2. Ванин А. Ф. Динитрозильные комплексы железа с тиол-содержащими лигандами как доноры катиона нитрозония могут подавлять вирусные инфекции (гипотеза). Биофизика, 65, 818-823 (2020). doi: 10.31857/S0006302920040250
  3. Onischuk A. A., Tolstikova T. G., Sorokina I. V., Zhukova N. A., Baklanov A. M., Karasev V. V., Borovkova O. V., Dultseva G. G., Boldyrev V. V., and Fomin V. M. Analgesic effect from Ibuprofen nanoparticles inhaled by male mice. J. Aerosol Med. Pulm. Drug Deliv., 22 (3), 245254 (2009). doi: 10.1089/jamp.2008.0721
  4. Borodulin R. R., Kubrina L. N., Shvydkiy V. O., Lakomkin V. L., and Vanin A. F. A simple protocol for the synthesis of dinitrosyl iron complexes with glutathione: EPR, optical, chromatographic and biological characterization of reaction products. Nitric Oxide, 35, 110-115 (2013). doi: 10.1016/j.niox.2013.08.007
  5. Vanin A. F., Poltorakov A. P., Mikoyan V. D., Kubrina L. N., and Burbaev D. S. Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies. Nitric Oxide, 23, 136-149 (2010). doi: 10.1016/j.niox.2010.05.285
  6. Vanin A. F., Serezhenkov V. A., Mikoyan V. D., and Genkin M. V. The 2.03 signal as an indicator of dinitrosyl-iron complexes with thiol-containing ligands. Nitric Oxide, 2, 224-234 (1998). doi: 10.1006/niox.1998.0180
  7. Vanin A. F., Huisman A., Stroes E. S., de Ruijter-Heijstek F. C., Rabelink T. J., and van Faassen E. E. Antioxidant capacity of mononitrosyl-iron-dithiocarbamate complexes: implications for NO trapping. Free Radic. Biol. Med., 30, 813-824 (2001). doi: 10.1016/s0891-5849(01)00466-x
  8. Ванин A. Ф., Микоян В. Д, Кубрина Л. Н., Бородулин P. P. и Бургова Е. Н. Моно- и биядерные динитрозильные комплексы железа с тиол-содержпащими лигандами в различных биосистемах. Биофизика, 60, 735-747 (2015).
  9. Mikoyan V. D., Burgova E. N., Borodulin R. R., and Vanin A. F. The binuclear form of dinitrosyl iron complexes with thiol-containing ligands in animal tissues. Nitric Oxide, 62, 1-10 (2017). doi: 10.1016/j.niox.2016.10.007
  10. Ванин А. Ф. и Ткачев Н. А. Динитрозильные комплексы железа с тиол-содержащими лигандами как источник универсальных цитотоксинов - катионов нитрозония. Биофизика, 68, 421-434 (2023). doi: 10.31857/S0006302923030018
  11. Ванин А. Ф., Абрамов А. А., Вагапов А. Б., Тимошин А. А., Пекшев А. В., Лакомкин В. Л. и Рууге Э. К. Почему вдыхание газообразного оксида азота не влияет на системное артериальное давление у человека и животных, Биофизика, 68, 1259-1264 (2023). doi: 10.31857/S0006302923060170
  12. Shumaev K. B., Gubkin A. A., Serezhenkov V. A., Lobysheva I. I., Kosmachevskaya O. V., Ruuge E. K., Lankin V. Z., Topunov A. F., and Vanin A. F. Interaction of reactive oxygen and nitrogen species with albumin- and methemoglobin-bound dinitrosyl-iron complexes. Nitric Oxide, 18, 37-46 (2008). doi: 10.1016/j.niox.2007.09.085

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences