The Action of Dinitrosyl Iron Complexes with a Ligand Based on N-acethyl-L-cysteine upon Inhalation Delivery of These Complexes to Rats

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The objective of the present research was to study the action of dinitrosyl iron complexes (DNIC) with a ligand based on N-acetyl-L-cysteine upon long-term inhalation exposure of rats to this substance. It has been shown that as a result, NO stabilized forms pass efficiently through the alveolal membrane into the lung tissue leading to the accumulation of dinitrosyl iron complexes with protein ligands and to an increase in the total NO level in the lungs and other organs thereby inducing a significant and long-lasting hypotensive effect.

作者简介

A. Timoshin

National Medical Research Center of Cardiology named after academician E.I. Chazov

Email: timoshin_a_a@mail.ru
Moscow, Russia

K. Shumaev

National Medical Research Center of Cardiology named after academician E.I. Chazov; A.N. Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Moscow, Russia

V. Lakomkin

National Medical Research Center of Cardiology named after academician E.I. Chazov

Moscow, Russia

A. Abramov

National Medical Research Center of Cardiology named after academician E.I. Chazov

Moscow, Russia

E. Ruuge

National Medical Research Center of Cardiology named after academician E.I. Chazov; M.V. Lomonosov Moscow State University

Department of Physics Moscow, Russia

参考

  1. Ke C.-H., Chen C.-H., Tsai M.-L., Wang H.-C., Tsai F.-T., Chiang Y.-W., Shih W.-C., Bohle D. S., and Liaw W.-F. {Fe(NO)2}9 dinitrosyl iron complex acting as a vehicle for the NO radical. J. Am. Chem. Soc., 139 (1), 67— 70 (2017). doi: 10.1021/jacs.6b11454
  2. Shumaev K. B., Kosmachevskaya O. V., Timoshin A. A., Vanin A. F., and Topunov A. F. Dinitrosyl iron complexes bind with hemoglobin as markers of oxidative stress. Methods Enzymol., 436, 445-461 (2008). doi: 10.1016/S0076-6879(08)36025-X
  3. Suryo Rahmanto Y., Kalinowski D. S., Lane D. J., Lok H.
  4. C., Richardson V., and Richardson D. R. Nitrogen monoxide (NO) storage and transport by dinitrosyl-dithiol-iron complexes: long-lived NO that is trafficated by interacting proteins. J. Biol. Chem., 287 (10), 6960-6968 (2012). doi: 10.1074/jbc.R111.329847
  5. Tsai M.-L., Tsou C.-C., and Liaw W.-F. Dinitrosyl iron complexes (DNICs): From biomimetic synthesis and spectroscopic characterization toward unveiling the biological and catalytic roles of DNICs. Acc. Chem. Res., 48, 1184-1193 (2015). doi: 10.1021/ar500459j
  6. Vanin A. F., Poltorakov A. P., Mikoyan V. D., Kubrina L. N., and Burbaev D. C. Polynuclear water-soluble Dinitrosyl Iron Complexes with cysteine and glutathione ligands: electron paramagnetic resonance and optical studies. Nitric Oxide, 23 (2), 136-149 (2010). doi: 10.1016/j.niox.2010.05.285
  7. Vanin A. F. Dinitrosyl iron complexes with thiol-contain-ing ligands as a “working form” of endogenous nitric oxide. Nitric Oxide, 54, 15-29 (2016). doi: 10.1016/j.niox.2016.01.006
  8. Vanin A. F. Physico-chemistry of dinitrosyl iron complexes as a determinant of their biological activity. Int. J. Mol. Sci., 22 (19), 10356 (2021). doi: 10.3390/ijms221910356
  9. Dungel P., Perlinger M., Weidinger A., Redl H., and Kozlov A. V. Cytoprotective effect of nitrite is based on the formation of dinitrosyl iron complexes. Free Radic. Biol. Med., 89, 300-310 (2015). doi: 10.1016/j.freeradbiomed.2015.08.012
  10. Shumaev K. B., Dudylina A. L., Ivanova M. V., Pugachenko I. S., and Ruuge E. K. Dinitrosyl iron complexes: Formation and antiradical action in heart mitochondria. BioFactors, 44 (3), 237-244 (2018). doi: 10.1002/biof.1418
  11. Shumaev K. B., Gorudko I. V., Kosmachevskaya O. V., Grigoryeva D. V., Panasenko O. M., Vanin A. F., Topunov A. F., Terekhova M. S., Sokolov A. V., Cherenkevich S. N., and Ruuge E.K. Protective effect of dinitrosyl iron complexes with glutathione in red blood cell lysis induced by hypochlorous acid. Oxid. Med. Cell. Longev., 2019, e2798154 (2019). doi: 10.1155/2019/2798154
  12. Timoshin A. A., Lakomkin V. L., Abramov A. A., Ruuge E. K., Kapel’ko V. I., Chazov E. I. and Vanin A. F. The hypotensive effect of the nitric monoxide donor Oxacom at different routs of its administration to experimental animals. Eur. J. Pharmacol., 765, 525—532 (2015). doi: 10.1016/j.ejphar.2015.09.011
  13. Шумаев К. Б, Петрова Н. Э., Заббарова И. В., Ванин А. Ф., Топунов А. Ф., Ланкин В. З. и Рууге Э. К. Взаимодействие оксоферрилмиоглобина и динитрозильных комплексов железа. Биохимия, 69 (5), 699-705 (2004). EDN: ORCNPN
  14. Шумаев К. Б., Космачевская О. В., Грачев Д. И., Тимошин А. А., Топунов А. Ф., Ланкин В. З. и Рууге Э. К. Возможный механизм антиоксидантного действия динитрозильных комплексов железа. Биомед. химия, 67 (2), 162-168 (2021). doi: 10.18097/PBMC20216702162
  15. Тимошин А. А., Шумаев К. Б., Лакомкин В. Л., Абрамов А. А. и Рууге Э. К. Исследование методом электронного парамагнитного резонанса транслокации стабилизированных форм NO через кожный покров крыс. Бюл. эксперим. биологии и медицины, 170 (9), 290-295 (2020). doi: 10.47056/0365-9615-2020-170-9-290-295
  16. Тимошин А. А., Шумаев К. Б., Лакомкин В. Л., Абрамов А. А. и Рууге Э. К. Действие динитрозильных комплексов железа с лигандом на основе N-ацетил-L-цистеина при сублингвальном введении этих, комплексов в организм крыс. Биофизика, 67 (3), 581-586 (2022). doi: 10.31857/S0006302922030188
  17. Ванин А. Ф., Пекшев А. В., Вагапов А. Б., Шарапов Н. А., Лакомкин В. Л., Абрамов А. А., Тимошин А. А. и Капелько В. И. Газообразный оксид азота и динитрозильные комплексы с тиолсодержащими лигандами как предполагаемые лекарственные средства, способные купировать COVID-19. Биофизика, 66 (1), 183-194 (2021). doi: 10.31857/S0006302921010208
  18. Timoshin A. A., Pisarenko O. I., Lakomkin V. L., Studneva I. M., and Ruuge E. K. Free radical intermediates in isolated rat heart during perfusion, ischemia, and reperfusion: effect of ischemic preconditioning. Exp. Clin. Cardiol., 5 (2), 59-64 (2000). EDN: LFYTAF
  19. Ванин А. Ф., Абрамов А. А., Вагапов А. Б., Тимошин А. А., Пекшев А. В., Лакомкин В. Л. и Рууге Э. К. Почему вдыхание газообразного оксида азота не влияет на системное артериальное давление у человека и животных? Биофизика, 68 (6), 1259-1264 (2023). doi: 10.31857/S0006302923060170
  20. Freeman B. A., O’Donnell V. B., and Schopfer F. J. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide, 77, 106-111 (2018). doi: 10.1016/j.niox.2018.05.002
  21. Vanin A. F. What is the mechanism of nitric oxide conversion into nitrosonium ions ensuriong S-nitrosating processes in living organisms. Cell Biochem. Biophys., 77 (4), 279-292 (2019). doi: 10.1007/s12013-019-00886-1
  22. Massa C. M., Liu Z., Taylor S., Pettit A. P., Stakheyeva M. N., Korotkova E., Popova V., Atochina-Vasserman E. N., and Gow A. J. Biological Mechanisms of S-Nitrosothiol Formation and Degradation: How Is Specificity of S-Nitrosylation Achieved? Antioxidants, 10 (7), 1111 (2021). doi: 10.3390/antiox10071111
  23. Vanin A. F. and Timoshin A. A. Determination of in vivo nitric oxide levels in animal tissues using a novel spin trapping technology. Methods Mol. Biol., 704, 135-149 (2011). doi: 10.1007/978-1-61737-964-2_11
  24. Bosworth C. A., Toledo J. C., Zmijewski J. W., Li Q., and Lancaster J. R. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc. Natl. Acad. Sci. USA, 106 (12), 46714676 (2009). doi: 10.1073/pnas.0710416106

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024