Radioprotective Effect of Exogenous Peroxiredoxin 6 in Mice Exposed to Different Doses of Whole-Body Ionizing Radiation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The search for effective and safe radio-modulating compounds that reduce cancer cell radioresistance and/or the concomitant damage to normal tissues caused by radiation remains a significant challenge in radiation therapy. Peroxiredoxin 6, a member of the thiol-specific peroxidase family, is a promising candidate to solve this problem. However, often in studies, insufficient attention is paid to radiation parameters, and there is no information about how different radiation parameters influence the radioprotective effect of exogenous peroxiredoxin 6. This article shows the peculiarities of the radioprotective effects of intravenous peroxiredoxin 6 at a concentration of 20 µg/g body weight and its mutant form Prx6-C47S (without peroxidase activity) administered shortly before X-ray or γ-irradiation with different dose rates and exposure times. Survival rates of the “10 Gy γ-irradiation 0.125 Gy/min” and “7 Gy X-ray irradiation 1 Gy/min” animal groups (8-fold difference in dose rate and exposure time) were correlated both for control and experimental animals.

作者简介

E. Karmanova

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

R. Goncharov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: yanchenkoay@mpei.ru
Pushchino, Russia

V. Bruskov

nstitute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

V. Novoselov

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

M. Sharapov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: sharapov.mg@yandex.ru
Pushchino, Russia

参考

  1. V. L. Martinez Marignac, L. Mondragon, and Favant J. L. Sources of ionizing radiation and their biological effects: An interdisciplinary view, from the physics to cell and molecular biology. Clin. Cancer Investig. J, 8 (4), 129—138 (2019).
  2. Hirota Y., Masunaga S., Kondo N., Kawabata S., Hirakawa H., Yajima H., Fujimori A., Ono K., Kuroiwa T., and Miyatake S. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation. J. Radiat. Res., 55 (1), 75-83 (2014). doi: 10.1093/jrr/rrt095
  3. Fischer J., Eglinton T. W., Frizelle F. A., and Hampton M. B. Peroxiredoxins in colorectal cancer: predictive biomarkers of radiation response and therapeutic targets to increase radiation sensitivity? Antioxidants (Basel), 7 (10), 136 (2018). doi: 10.3390/antiox7100136
  4. Checker R., Bhilwade H. N., Nandha S. R., Patwardhan R. S., Sharma D., and Sandur S. K. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis. Toxicol. Appl. Pharmacol., 461, 116389 (2023). doi: 10.1016/j.taap.2023.116389
  5. Zhou T., Zhang L.-Y., He J.-Z., Miao Z.-M., Li Y.-Y., Zhang Y.-M., Liu Z.-W., Zhang S.-Z., Chen Y., Zhou G.-C., and Liu Y.-Q. Review: mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front. Immunol., 14, 1133899 (2023). doi: 10.3389/fimmu.2023.1133899
  6. Porrazzo A., Cassandri M., D'Alessandro A., Morciano P., Rota R., Marampon F., and Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol. (Dordr.), 47 (3), 717-732 (2024). doi: 10.1007/s13402-023-00906-6
  7. Obrador E., Salvador R., Villaescusa J. I., Soriano J. M., Estrela J. M., and Montoro A. (2020). Radioprotection and radiomitigation: from the bench to clinical practice. Biomedicines, 8 (11), 461 (2020). doi: 10.3390/biomedicines8110461
  8. Cerda M. B., Lloyd R., Batalla M., Giannoni F., Casal M., and Policastro, L. Silencing peroxiredoxin-2 sensitizes human colorectal cancer cells to ionizing radiation and oxaliplatin. Cancer Lett., 388, 312-319 (2017). doi: 10.1016/j.canlet.2016.12.009
  9. Hao J., Song Z., Su J., Li L., Zou L., and Zou K. The PRX-1/TLR4 axis promotes hypoxia-induced radiotherapy resistance in non-small cell lung cancer by targeting the NF-KB/p65 pathway. Cell. Signal., 110, 110806 (2023). doi: 10.1016/j.cellsig.2023.110806
  10. Li J., Sun Y., Zhao X., Y. Ma, Y. Xie, S. Liu, B. Hui, X. Shi, X. Sun, and Zhang X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in glioma cells. Cells Death Dis., 14 (4), 259 (2023). doi: 10.1038/s41419-023-05732-0
  11. Ding N., Jiang H., Thapa P., Hao Y., Alshahrani A., Allison D., Izumi T., Rangnekar V. M., Liu X., and Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J. Biol. Chem., 298 (7), 102123 (2022). doi: 10.1016/j.jbc.2022.102123
  12. Аклеев А. В. Радиобиологические закономерности реакции нормальных тканей при лучевой терапии опухолей. Радиац. биол. Радиоэкол., 54 (3), 241 (2014).
  13. Forshaw T. E., Holmila R., Nelson K. J., Lewis J. E., Kemp M. L., Tsang A. W., Poole L. B., Lowther W. T., and Furdui C. M. Peroxiredoxins in cancer and response to radiation therapies. Antioxidants, 8 (1), 11 (2019). doi: 10.3390/antiox8010011
  14. Novoselova E. G., Sharapov M. G., Lunin S. M., Parfenyuk S. B., Khrenov M. O., Mubarakshina E. K., Kuzekova A. A., Novoselova T. V., Goncharov R. G., and Glushkova O. V. Peroxiredoxin 6 applied after exposure attenuates damaging effects of X-ray radiation in 3T3 mouse fibroblasts. Antioxidants 10 (12), 1951 (2021). doi: 10.3390/antiox10121951
  15. Sharapov M. G., Novoselov V. I., and Gudkov S. V. Radioprotective role of peroxiredoxin 6. Antioxidants, 8 (1), 15 (2019). doi: 10.3390/antiox8010015
  16. Новоселов В. И. Роль пероксиредоксинов при окислительном стрессе в органах дыхания. Пульмонология, 1, 83-87 (2012).
  17. Sharapov M. G., Goncharov R. G., Parfenyuk S. B., Glushkova O. V., and Novoselov V. I. The role of phospholipase activity of peroxiredoxin 6 in its transmembrane transport and protective properties. Int. J. Mol. Sci., 23 (23), 15265 (2022). doi: 10.3390/ijms232315265
  18. Salovska B., Kondelova A., Pimkova K., Liblova Z., Pribyl M., Fabrik I., Bartek J., Vajrychova M., and Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol. 49, 102212 (2022). doi: 10.1016/j.redox.2021.102212
  19. Sharapov M. G., Novoselov V. I., Fesenko E. E., Bruskov V. I., and Gudkov S. V. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: Effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals. Free Rad. Res. 51 (2), 148-166 (2017). doi: 10.1080/10715762.2017.1289377
  20. Sharapov M. G., Novoselov V. I., and Ravin V. K. The cloning, expression, and comparative analysis of peroxiredoxin 6 from various sources. Mol. Biol., 43, 465-471 (2009). doi: 10.1134/S0026893309030145
  21. Nagataki S. and Takamura N. Radioactive doses - predicted and actual - and likely health effects. Clin. Oncol. (R. Coll. Radiol.), 28 (4), 245-254 (2016). doi: 10.1016/j.clon.2015.12.028
  22. Jeon J. Review of therapeutic applications of radiolabeled functional nanomaterials. Int. J. Mol. Sci., 20, 2323 (2019). doi: 10.3390/ijms20092323
  23. Down J. D., Easton D. F., and Steel G. G. Repair in the mouse lung during low dose-rate irradiation. Radiother. Oncol., 6 (1), 29-42 (1986). doi: 10.1016/s0167-8140(86)80107-4
  24. Thames H. D. An “incomplete-repair” model for survival after fractionated and continuous irradiations. Int. J. Radiat. Biol., 47 (1), 319-339 (1985). doi: 10.1080/09553008514550461
  25. Richardson R. B. Ionizing radiation and aging: rejuvenating an old idea. Aging (Albany NY), 1 (11), 887-902 (2009). doi: 10.18632/aging.100081
  26. Kang H., Kim B., Park J., Youn H.-S., and Youn B.-H. The Warburg effect on radioresistance: Survival beyond growth. Biochim. Biophys. Acta, 1878 (6), 188988 (2023). doi: 10.1016/j.bbcan.2023.188988
  27. Mao G., Yao Y., and Kong Z. Long term exposure to Y-rays induces radioresistance and enhances the migration ability of bladder cancer cells. Mol. Med. Rep., 18 (6), 5834-5840 (2018). doi: 10.3892/mmr.2018.9605
  28. Chen N., Wu L., Yuan H., and Wang J. ROS/Autopha-gy/Nrf2 pathway mediated low-dose radiation induced radio-resistance in human lung adenocarcinoma A549 cell. Int. J. Biol. Sci., 11 (7), 833-844 (2015). doi: 10.7150/ijbs.10564
  29. Abad E., Graifer D., and Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett., 474, 106-117 (2020). doi: 10.1016/j.canlet.2020.01.008
  30. Fan M., Ahmed K. M., Coleman M. C., Spitz D. R., and Li J. J. Nuclear factor-кВ and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells. Cancer Res., 67 (7), 3220-3228 (2007). doi: 10.1158/0008-5472.CAN-06-2728
  31. Steel G. G., McMillan T. J., and Peacock J. H. The 5Rs of radiobiology. Int. J. Radiat. Biol., 56 (6), 1045 (1989). doi: 10.1080/09553008914552491
  32. Villar S. F., Ferrer-Sueta G., and Denicola A. The multifaceted nature ofperoxiredoxins in chemical biology. Curr. Opin. Chem. Biol., 76, 102355 (2023). doi: 10.1016/j.cbpa.2023.102355
  33. Jeon H.-J., Park Y. S., Cho D.-H., Kim J.-S., Kim E., Chae H. Z., Chun S.-Y., and Oh J. S. Peroxiredoxins are required for spindle assembly, chromosome organization, and polarization in mouse oocytes. Biochem. Biophys. Res. Commun., 489 (2), 193 (2017). doi: 10.1016/j.bbrc.2017.05.127
  34. Kim Y. J., Lee W. S., Ip C., Chae H. Z., Park E. M., and Park Y. M. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Cancer Res., 66 (14), 7136-7142 (2006). doi: 10.1158/0008-5472.CAN-05-4446
  35. Son Y. W., Cheon M. G., Kim Y., and Jang H. H. Prx2 links ROS homeostasis to stemness of cancer stem cells. Free Radic. Biol. Med., 134, 260-267 (2019).
  36. M. De Martino, C. Daviaud, E. Hajjar, and C. Vanpouille-Box, Int. Rev. Cell Mol. Biol., 376, 121 (2023). doi: 10.1016/j.freeradbiomed.2019.01.001
  37. Li H., Benipal B., Zhou S., Dodia C., Chatterjee S., Tao J. Q., Sorokina E. M., Raabe T., Feinstein S. I., and Fisher A. B. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free Radic. Biol. Med., 87, 356-365 (2015). doi: 10.1016/j.freeradbiomed.2015.06.009
  38. Григорьев П. А., Шарапов М. Г. и Новоселов В. И. Потенциал-зависимые катионные каналы, формируемые пероксиредоксином-6 в липидном бислое. Биофизика, 60 (4), 696-699 (2015).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024