Development of several embryo sacs in ovule of Paeonia anomala (Paeoniaceae)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article presents the results of the study of development of the ovule and female gametophyte in Paeonia anomala L. The possibility of the formation of several embryo sacs in one ovule due to the development of several megasporocytes of the multicellular sporogenous complex and their entry into meiosis is confirmed. From 1 to 4 megasporocytes can enter meiosis, if they are covered by callose. Most often, 2-3 tetrads of megaspores are formed, although further development usually occurs in one tetrad; the rest can remain intact until the late 4-nucleate embryo sac. Possible reasons for the development of a single embryo sac are discussed: competition between tetrads, disruptions in meiosis, mechanisms regulating the fate of cells and the program of their development. Some morphogenetic correlations in the development of the embryo sac and the surrounding structures of the ovule are revealed. In particular, it has been shown that the development of two embryo sacs at the late 4-nucleate stage correlates with partial or complete destruction of the nucellar cap, whereas during the development of one gametophyte it is preserved for a long time. The dynamics of starch in the nucellar tissues during the gametophyte development has been noted: its accumulation first in the cells of the basal part, where the formation of tetrads and a 2-nucleate embryo sac occurs, and then its highest concentration in the lateral parts of the parietal tissue surrounding the growing gametophyte.

全文:

受限制的访问

作者简介

Е. Sapunova

Komarov Botanical Institute of the Russian Academy of Sciences

Email: vinogradova-galina@binran.ru
俄罗斯联邦, 2, Prof. Popov St., Saint Petersburg, 197022

G. Vinogradova

Komarov Botanical Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vinogradova-galina@binran.ru
俄罗斯联邦, 2, Prof. Popov St., Saint Petersburg, 197022

参考

  1. Batygina T.B. 1993. Embryoidogeny– a new category of reproduction in flowering plants. – Tr. Bot. In-ta im. V.L. Komarova. 8: 15–25 (In Russ.).
  2. Batygina T.B. 1999. Genetic heterogeneity of seeds: embryological aspects. – Fiziologiya rasteniy. 46(3): 438–454 (In Russ.).
  3. Batygina T.B. 2002. Ovule and seed viewed from reliability of biological systems. – In: Embryology of flowering plants. Terminology and concepts. Vol. 1. Generative organs of flower. Enfield (NH, USA). P. 214–217.
  4. Carman J.G. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory and polyembryony. – Biol. J. Linn. Soc. 61: 51–94.
  5. Carman J.G., Jamison M., Elliott E., Dwivedi K.K., Naumova T.N. 2011. Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules. – BMC Plant Biology. 11: 9. http://www.biomedcentral.com/1471-2229/11/9
  6. Chen L.Z., Kozono T. 1994. Cytology and quantitative analysis of aposporous embryo sac development in guineagrass (Panicum maximum Jacq.). – Cytologia. 59: 259–260.
  7. D’Amato F. 1946. Nuove ricerche embriologiche e cariologiche sul genere Euphorbia. – Nuovo Giorn. Bot. Ital. 53: 405–436.
  8. Demesa-Arévalo E., Vielle-Calzada J.-P. 2013. The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. – Plant Cell. 25(4): 1274–1287. https://doi.org/10.1105/tpc.112.106237
  9. Dobeš C., Lückl A., Kausche L., Scheffknecht S., Prohaska D., Sykora C., Paule J. 2015. Parallel origins of apomixis in two diverged evolutionary lineages in tribe Potentilleae (Rosaceae). – Bot. J. Linn. Soc. 177(2): 214–229. https://doi.org/10.1111/boj.12239
  10. Eriksen B., Fredrikson M. 2000. Megagametophyte development in Potentilla nivea (Rosaceae) from Northern Swedish Lapland. – Amer. J. Bot. 87(5): 642–651.
  11. Flores E.M., Moseley M.F. 1982. The anatomy of the pistillate inflorescence and flower of Casuarina verticillata Lamarck (Casuarinaceae). – Amer. J. Bot. 69(10): 1673–1684. https://doi.org/10.2307/2442922
  12. Kaybeleva E.I., Yudakova O.I. 2022. Apomixis in grasses of Saratov region flora. – Bot. Zhurn. 107(8): 766–780 (In Russ.).
  13. https://doi.org/10.31857/S0006813622080087
  14. Kordyum E.A. 1967. Tsitoembriologiya semeistva zontichnykh [Cytoembryology of family Umbelliferae]. Kiev. 176 p. (In Russ.).
  15. Leszczuk A., Domaciuk M., Szczuka E. 2018. Unique features of the female gametophyte development of strawberry Fragaria × ananassa Duch. – Scientia Horticulturae. 234: 201–209. https://doi.org/10.1016/j.scienta.2018.02.030
  16. Mandrik V.Yu., Mentkovskaya E.A. 1977. Cytoembryological study of some pooulations of Potentilla erecta (L.) Hampe (Rosaceae) in Ukrainian Carpathians (Microsporogenesis. Differentiation of seedbud and development of female gametophyte). – Bot. Zhurn. 62(7): 1062–1073 (In Russ.).
  17. Modilewski J. 1909. Zur Embryobildung von Euphorbia procera. – Ber. Deutsch. Bot. Ges. 27(1): 21–26.
  18. Modilewski J. 1911. Über die anomale Embryosack-entwicklung bei Euphorbia palustris L. und anderen Euphorbiaceen. – Ber. Deutsch. Bot. Ges. 29(7): 430–436.
  19. Müntzing A. 1938. Note on heteroploid twin plants from eleven genera. – Hereditas. 24(4): 487–491.
  20. Musiał K., Kościńska-Pająk M., Antolec R., Joachimiak A.J. 2015. Deposition of callose in young ovules of two Taraxacum species varying in the mode of reproduction. – Protoplasma. 252(1): 135–144. https://doi.org/10.1007/s00709-014-0654-8
  21. Noher de Halac I., Harte C. 1977. Different patterns of callose wall formation during megasporogenesis in two species of Oenothera (Onagraceae). – Pl. Syst. Evol. 127: 23–38. https://doi.org/10.1007/BF00988016
  22. Noher de Halac I., Harte C. 1985. Cell differentiation during megasporogenesis and megagametogenesis. – Phytomorphology. 35(3-4): 189–200.
  23. Öztürk R., Ünal M. 2003. Cytoembryological studies on Paeonia peregrina L. – J. Cell and Mol. Biol. 2: 85–89.
  24. Pausheva Z.P. 1980. Praktikum po tsitologii rasteniy [Manuals for plant cytology]. Moscow. 255 p. (In Russ.).
  25. Piršelová B., Matušíková I. 2013. Callose: the plant cell wall polysaccharide with multiple biological functions. – Acta Physiol. Plant. 35: 635–644. https://doi.org/10.1007/s11738-012-1103-y
  26. Qiu Y.L., Liu R.S., Xie C.T., Russell S.D., Tian H.Q. 2008. Calcium changes during megasporogenesis and megaspore degeneration in lettuce (Lactuca sativa L.). – Sex. Plant Reprod. 21: 197–204. https://doi.org/10.1007/s00497-008-0079-7
  27. Renner O. 1921. Heterogamie im weiblichen Geschlecht und Embryosackentwicklung bei Oenotheren. – Zeitschr. Bet. 13: 609–621.
  28. Rodkiewicz B. 1970. Callose in cell walls during megasporogenesis in angiosperms. – Planta. 93: 39–47.
  29. Rodkiewicz B., Bednara J. 2002. Megasporogenesis. – In: Embryology of flowering plants. Terminology and concepts. Vol. 1. Generative organs of flower. Enfield (NH, USA). P. 114–115.
  30. Rodkiewicz B., Bednara J., Pora H. 1971. Alternative localization of the active megaspore in tetrads in Oenothera muricata. – Bull. Acad. Polon. Sci. Ser. Sci. biol. 19(10): 691–694.
  31. Rojek J., Kapusta M., Kozieradzka-Kiszkurno M., Majcher D., Gorniak M., Sliwinska E., Sharbel T. F., Bohdanowicz J. 2018. Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). – Ann. Bot. 122(4): 513–539. https://doi.org/10.1093/aob/mcy114
  32. Schnarf K. 1929. Embryologie der Angiospermen. Berlin. 690 p.
  33. Shamrov I.I. 1997. Development of the ovule and seed in Paeonia lactiflora (Paeoniaceae). – Bot. Zhurn. 82(6): 24–46 (In Russ.).
  34. Shamrov I.I. 2005. Metabolite transport and possible factors of aberrant ovule formation. – Bot. Zhurn. 90(11): 1651–1675 (In Russ.).
  35. Shamrov I.I. 2008. Ovule of flowering plants: structure, functions, origin. Moscow. 350 p. (In Russ.).
  36. Shishkinskaya N.A., Yudakova O.I., Tyrnov B.S. 2004. Populatsionnaya embriologiya i apomiksis u zlakov [Population embryology and apomixis in cereals]. Saratov. 145 p. (In Russ.).
  37. Śnieżko R., Harte C. 1984. Polarity and competition between megaspores in the ovule of Oenothera hybrids. – Pl. Syst. Evol. 144: 83–97. https://doi.org/10.1007/BF00986667
  38. Sogo A., Noguchi J., Jaffré T., Tobe H. 2004. Pollen-tube growth pattern and chalazogamy in Casuarina equisetifolia (Casuarinaceae) – J. Plant Res. 117(1): 37–46. https://doi.org/10.1007/s10265-003-0129-z
  39. Swamy B.G.L. 1948. A contribution to the life history of Casuarina. – Proc. Amer. Acad. Arts and Sci. 77(1): 3–32.
  40. Titova G.E., Nyukalova M.A. 2021. Embryo sac development in Euphorbia myrsinites and E. komaroviana (Euphorbiaceae). – Bot. Zhurn. 106(5): 438–459 (In Russ.). https://doi.org/10.31857/S0006813621050057
  41. Titova G.E., Yakovleva O.V., Zhinkina N.A., Geltman D.V. 2018. Seed development in some species of Helioscopia and Esula sections, subgenus Esula of the genus Euphorbia (Euphorbiaceae) – Bot. Zhurn. 103(11): 1355–1389 (In Russ.). https://doi.org/10.7868/S0006813618110017
  42. Treub M. 1891. Sur les Casuarinees et leur place dans le systeme naturel. – Annales du Jardin Botanique de Buitzenzorg. 10: 145–219.
  43. Vinogradova G.Yu. 2013. Polyembryony in Allium schoenoprasum (Alliaceae). Origin of embryos. – Bot. Zhurn. 98(8): 957–973 (In Russ.). https://doi.org/10.1134/S1234567813080028
  44. Vinogradova G.Yu. 2017. Morphogenesis of the female reproductive structures in Euphorbia (Euphorbiaceae) species different by the embryo sac development type. – Bot. Zhurn. 102(8): 1060–1093 (In Russ.).
  45. Vinogradova G.Yu., Zhinkina N.A. 2021. Why does only one embryo sac develop in the Paeonia ovule with multiple archesporium? – Plant Biology. 23: 267–274. https://doi.org/10.1111/plb.13206
  46. Voronova O.N., Gavrilova V.A. 2007. Apospory in the sunflower Helianthus annuus (Asteraceae). – Bot. Zhurn. 92(10): 1535–1544 (In Russ.).
  47. Walters J.L. 1962. Megasporogenesis and gametophyte selection in Paeonia californica. – Amer. Jour. Bot. 49(7): 787–794. https://doi.org/10.2307/2439173
  48. Yakovlev M.S., Yoffe M.D. 1957. Osobennosti embriogeneza roda Paeonia L. [Features of embryogenesis of the genus Paeonia L.]. – Bot. Zhurn. 42(10): 1491–1502 (In Russ.).
  49. Yakovlev M.S., Yoffe M.D. 1960. Megasporogenes u Paeonia anomala L. [Megasporogenesis in Paeonia anomala L.]. – In: Voprosy evolutsii, biogeografii, genetiki i selektsii. Sbornik, posvyashchennyi 70-letiyu so dnya rozhdeniya akademika N.I. Vavilova. Moscow, Leningrad. P. 320–325 (In Russ.).
  50. Yakovlev M.S., Yoffe M.D. 1965. The embryology in genus Paeonia L. – In: Flower morphology and reproductive process in Angiosperms. Moscow; Leningrad. P. 140–176 (In Russ.).
  51. Yudakova O.I., Kaybeleva E.I. 2014. Apospory in representatives of the genus Koeleria Pers. – Bull. Bot. gard. Saratov University. 14: 154–161 (In Russ.).
  52. Zhgenti L.P. 1974. Tsito-embriologiya nekotorych kavkazskich vidov roda Paeonia [Cyto-embryology of some Caucasian species of genus Paeonia]: Abstract of a dissertation for the degree of Candidate of Biological Sciences. Tbilisi. 41 p. (In Russ.).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Ovule development in Paeonia anomala: 1 – ovule primordium at the stage of integument and sporogenous cell initiation; 2–7 – structure of the ovule at the stages of: mitotic division of sporogenous cells and increase in their number (2), megasporocytes (3), megaspore tetrads (4), 2-nucleate embryo sac (5), 4-nucleate embryo sac (6), and embryo sac during maturation (7); 8 – formed ovule with a degenerating embryo sac at the 4-nucleate stage. e s – embryo sac, h – hypostase, i i – inner integument, m – micropyle, mc – megasporocyte, n c – nucellar cap, o i – outer integument, p o – placental obturator, p t – parietal tissue, s c – sporogenous cells, t – megaspore tetrad, v b – vascular bundle. Scale: 1–4 – 50 μm, 5–8 – 100 μm.

下载 (1MB)
3. Fig. 2. Development of the multicellular sporogenous complex and megasporogenesis in the ovule of Paeonia anomala: 1 – differentiation of sporogenous cells; 2 – prophase of mitotic division in sporogenous cells, leading to an increase in their number; 3 – sporogenous complex consisting of several megasporocytes arranged in 2 layers in the central part of the nucellus; 4–8 – formation of one or several tetrads of megaspores and dyads, in which the nuclei are in meiosis II (5 – development of the functional chalazal megaspore; 7, 8 – visualization with fluorescent microscopy of the tetrads of megaspores stained with aniline blue); 9 – localization of starch in the cells of the ovule, predominantly in the basal part of the nucellus near the tetrad of megaspores and in smaller quantities in the cells of the parietal tissue; d – dyad of cells formed after meiosis I, f m – functional megaspore, i i – inner integument, mc – megasporocyte, n c – nucellar cap, o i – outer integument, p t – parietal tissue, s c – sporogenous cells, s g – starch grains, t – tetrad of megaspores. Scale: 1–9 – 20 μm.

下载 (901KB)
4. Fig. 3. Development of the embryo sacs in the ovule of Paeonia anomala: 1 – 2-nucleate embryo sac formed from the functional megaspore of one tetrad, two other tetrads in the ovule do not develop further (1a – tetrad of megaspores in the same ovule as in 1, but in the next section); 2 – 2-nucleate embryo sac growing along the parietal tissue cells in the micropylar direction; 3 – 4-nucleate embryo sac growing along the parietal tissue cells in the micropylar direction; 4 – 4-nucleate embryo sac; 5 – two 4-nucleate embryo sacs in the same ovule; 6 – embryo sac in the process of maturation of its elements (6a – egg cell located in the next section). a – antipodals, e c – egg cell, e s – embryo sac, n c – nucellar cap, p t – parietal tissue, t – tetrad of megaspores. Scale: 1–6 – 50 μm.

下载 (992KB)

版权所有 © Russian Academy of Sciences, 2025