Monitoring of grass pollen in the air of Ryazan

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The pollen of grasses (Poaceae) is one of the main causes of pollinosis in summer worldwide. The pollen of all grass species belongs to the same palynomorphological type and is identified only to the family level during routine pollen analysis. The periods of pollen dispersion in different grass species overlap significantly, while the allergenic properties of different pollen may vary. In this paper, we attempted to detail the grass pollen curve obtained during aerobiological monitoring based on phenological observations. The calculation of the phenological index (a combination of data on the phenological state of the species, its pollen production, and abundance) was used as a basis method. The research was conducted in Ryazan from 2020 to 2022. It was shown that the application of the phenological index has several limitations, and the reasons for the disagreement between phenological and aerobiological data were analyzed. The discrepancies are determined primarily by the difference in the research methodology: the phenological index reflects flowering at specific sites, and pollen traps installed on the roofs of buildings provide insight into a regional pollen spectrum over a large area. The phenological index can be used to assess the contribution of different species to the aerobiological spectrum’s composition and determine the pollen dispersion sequence. In Ryazan, Festuca pratensis, Dactylis glomerata, and Phleum pratense should be considered the most dangerous species as the main cause of pollinosis in midsummer.

全文:

受限制的访问

作者简介

V. Karaseva

Esenin Ryazan State University

编辑信件的主要联系方式.
Email: v.karaseva94@mail.ru
俄罗斯联邦, 46, Svoboda St., Ryazan, 390000

Yu. Selezneva

Esenin Ryazan State University

Email: posevina_julia@mail.ru
俄罗斯联邦, 46, Svoboda St., Ryazan, 390000

E. Severova

Lomonosov Moscow State University; Shenzhen MSU-BIT University

Email: elena.severova@mail.ru
俄罗斯联邦, 1, Leninskie Gory, Moscow, 119991; 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province, 518172, China

参考

  1. Alonso A., Bull R.D., Acedo C., Gillespie L.J. 2014. Design of plant-specific PCR primers for the ETS region with enhanced specificity for tribe Bromeae and their application to other grasses (Poaceae). – Botany. 92 (10): 693–699. https://doi.org/10.1139/cjb-2014-0062
  2. Andersson K., Lidholm J. 2003. Characteristics and immunobiology of grass pollen allergens. – IAA. 130(2): 87–107. https://doi.org/10.1159/000069013
  3. Becker J., Steckling-Muschack N., Mittermeier I., Bergmann K.C., Böse-O’Reilly S., Buters J., Damialis A., Heigl K., Heinrich J., Kabesch M., Mertes H., Nowak D., Schutzmeier P., Walser-Reichenbach S., Weinberger A., Korbely C., Herr C., Heinze S., Kutzora S. 2021. Threshold values of grass pollen (Poaceae) concentrations and increase in emergency department visits, hospital admissions, drug consumption, and allergic symptoms in patients with allergic rhinitis: a systematic review. – Aerobiologia. 37: 633–662. https://doi.org/10.1007/ s10453-021-09720-9
  4. Behrendt H., Tomczok J., Sliwa-Tomczok W., Kasche A., Ebner von Eschenbach C., Becker W.M., Ring J. 1999. Timothy Grass (Phleum pratense L.) Pollen as allergen carriers and initiators of an allergic response. – International Archives of Allergy and Immunology. 118(2-4): 414–418. https://doi.org/10.1159/000024151
  5. Brennan G.L., Potter C., De Vere N., Griffith G.W., Skjøth C.A., Osborne N.J., Wheeler B.W., McInnes R.N., Clewlow Y., Barber A. 2019. Temperate airborne grass pollen defined by spatio-temporal shifts in community composition. – Nature Ecology & Evolution. 3(5): 750–754. https://doi.org/10.1038/s41559-019-0849-7
  6. Campbell B.C., Al Kouba J., Timbrell V., Noor M.J., Massel K., Gilding E.K., Angel N., Kemish B., Hugenholtz P., Godwin I.D. 2020. Tracking seasonal changes in diversity of pollen allergen exposure: targeted metabarcoding of a subtropical aerobiome. – Science of the Total Environment. 747: 141189. https://doi.org/10.1016/j.scitotenv.2020.141189
  7. Cecchi L., Scala E., Caronni S., Citterio S., Asero R. 2021. Allergenicity at component level of sub‐pollen particles from different sources obtained by osmolar shock: A molecular approach to thunderstorm‐related asthma outbreaks. – Clin Experimental Allergy. 51(2): 253–261. https://doi.org/10.1111/cea.13764
  8. D’Amato G., Cecchi L., Bonini S., Nunes C., Annesi-Maesano I., Behrendt H., Liccardi G., Popov T., Van Cauwenberge P. 2007а. Allergenic pollen and pollen allergy in Europe. – Allergy. 62(9): 976–990. https://doi.org/10.1111/j.1398-9995.2007.01393.x
  9. D’Amato G., Liccardi G., Frenguelli G. 2007b. Thunderstorm‐asthma and pollen allergy. – Allergy. 62(1): 11–16. https://doi.org/10.1111/j.1398-9995.2006.01271.x
  10. Driessen M.N.B.M., Willemse M.T.M., Van Luijn J.A.G. 1989. Grass pollen grain determination by light- and UV-microscopy. – Grana. 28(2): 115–122. https://doi.org/10.1080/00173138909429962
  11. Frisk C.A., Apangu G.P., Petch G.M., Adams-Groom B., Skjøth C.A. 2022. Atmospheric transport reveals grass pollen dispersion distances. – Science of the Total Environment. 814: 152806. https://doi.org/10.1016/j.scitotenv.2021.152806
  12. Galán C., Smith M., Thibaudon M., Frenguelli G., Oteros J., Gehrig R., Berger U., Clot B., Brandao R. 2014. Pollen Monitoring: minimum requirements and reproducibility of analysis. – Aerobiologia. 30: 385–395. https://doi.org/10.1007/s10453-014-9335-5
  13. García-Mozo H. 2017. Poaceae pollen as the leading aeroallergen worldwide: A review. – Allergy. 72(12): 1849–1858. https://doi.org/10.1111/all.13210
  14. Ghitarrini S., Galán C., Frenguelli G., Tedeschini E. 2017. Phenological analysis of grasses (Poaceae) as a support for the dissection of their pollen season in Perugia (Central Italy). – Aerobiologia. 33(3): 339–349. https://doi.org/10.1007/s10453-017-9473-7
  15. Hoffmann‐Sommergruber K., Ferreira F.D., Ebner C., Barisani T., Korninger L., Scheiner D., Kraft. O., Baumgartner I. 1996. Detection of allergen‐specific IgE in tears of grass pollen‐allergic patients with allergic rhinoconjunctivitis. – Clin Experimental Allergy. 26(1): 79–87. https://doi.org/10.1111/j.1365-2222.1996.tb00059.x
  16. Hrabina M., Peltre G., Ree R. Van, Moingeon P. 2008. Grass pollen allergens. – Clinical & Experimental Allergy Reviews. 8(1): 7–11. https://doi.org/10.1111/j.1472-9733.2008.00126.x
  17. Karaseva V.S., Selezneva J.М., Kazakova М.V., Severova Е.E. 2021. Phenological analysis of grass pollination in Ryazan’. – Bull. Moscow Soc. Natur. Biol. Ser. 126(6): 18–28 (In Russ.).
  18. Kazakova M.V., Shcherbakov A.V. 2017. Floristicheskaya izuchennost' munitsipal'nykh rayonov Ryazanskoy oblasti [Floristic study of municipal districts of the Ryazan region]. – In: Trudy Ryaz. Otd. RBO. Vyp. 4: Floristicheskie issledovaniya. Ryazan. P. 84–138 (In Russ.).
  19. Krinitsina A.A., Omelchenko D.O., Kasianov A.S., Karaseva V.S., Selezneva Y.M., Chesnokova O.V., Shirobokov V.A., Polevova S.V., Severova E.E. 2023. Aerobiological monitoring and metabarcoding of grass pollen. – Plants. 12(12): 2351. https://doi.org/10.3390/plants12122351
  20. Lipiec A., Rapiejko P., Samolinski B., Krzych E. 2005. Correlation between conjunctival provocation test results and conjunctival symptoms in pollinosis-Preliminary report. – Annals of Agricultural and Environmental Medicine. 12(1): 17–20.
  21. Meier U. 1997. Growth stages of mono-and dicotyledonous plants. Berlin, Heidelberg. 622 p.
  22. Nepi M., Franchi G.G., Padni E. 2001. Pollen hydration status at dispersal: cytophysiological features and strategies. – Protoplasma. 216: 171–180.
  23. Nilsson S., Persson S. 1981. Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. – Grana. 20(3): 179–182. https://doi.org/10.1080/00173138109427661
  24. PollenLibrary.com – Allergen and Botanic Reference Library. 2023. https://www.pollenlibrary.com/ (Accessed: 29.01.2023)
  25. Rapiejko P., Stankiewicz W., Szczygielski K., Jurkiewicz D. 2007. Progowe stężenie pyłku roślin niezbędne do wywołania objawów alergicznych. – Otolaryngologia Polska. 61(4): 591–594. https://doi.org/10.1016/S0030-6657(07)70491-2
  26. Rowney F.M., Brennan G.L., Skjøth C.A., Griffith G.W., McInnes R.N., Clewlow Y., Adams-Groom B., Barber A., De Vere N., Economou T. 2021. Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health. – Current Biology. 31(9): 1995–2003. https://doi.org/https://doi.org/10.1016/j.cub.2021.02.019
  27. Severova E., Volkova O. 2018. Sampling height in aerobiological monitoring. – In: 11th International Congress on Aerobiology. Programme & Abstract book. Italy. P. 74.
  28. Severova E., Kopylov-Guskov Y., Selezneva Y., Karaseva V., Yadav S.R., Sokoloff D. 2022. Pollen Production of selected grass species in Russia and India at the levels of anther, flower and inflorescence. – Plants. 11(3): 285. https://doi.org/10.3390/plants11030285
  29. Skjøth C.A., Ørby P.V., Becker T., Geels C., Schlünssen V., Sigsgaard T., Bønløkke J.H., Sommer J., Søgaard P., Hertel O. 2013. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. – Biogeosciences. 10(1): 541–554. https://doi.org/10.5194/bg-10-541-2013
  30. Suphioglu C. 1998. Thunderstorm asthma due to grass pollen. – International archives of allergy and immunology. 116(4): 253–260. https://doi.org/10.1159/000023953
  31. Torshkhoeva R.M., Namazova-Baranova L.S., Muradova O.I., Tomilova A.Y., Voznesenskaya N.I. 2014. Allergen-specific immunotherapy in children with pollinosis. – Current pediatrics. 13(1): 155–161 (In Russ.). https://doi.org/10.15690/vsp.v13i1.927
  32. Volkova O., Severova E. 2019. Poaceae pollen season and associations with meteorological parameters in Moscow, Russia, 1994–2016. – Aerobiologia. 35(4): 73–84. https://doi.org/10.1007/s10453-018-9540-8
  33. Wang A., Gopurenko D., Wu H., Lepschi B. 2017. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in Eastern Australia. – PloS One. 12(4): e0175338. https://doi.org/10.1371/journal.pone.0175338
  34. Weather archive in Ryazan. 2023. https://rp5.ru/Weather_Archive_in_Ryazan (accessed: 20.01.2023)
  35. Weber R.W. 2003. Patterns of pollen cross-allergenicity. – Journal of Allergy and Clinical Immunology. 112(2): 229–239. https://doi.org/10.1067/mai.2003.1683

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dynamics of grass pollination, 2020–2022, cumulative diagram. Horizontally – date (day and month), vertically – pollen concentration (pg/m3).

下载 (178KB)
3. Fig. 2. Dynamics of pollination and change in phenological index, 2020–2022.

下载 (279KB)
4. Fig. 3. Detalization of phenological index curves, 2020–2022.

下载 (525KB)

版权所有 © Russian Academy of Sciences, 2025