Have macrofossils of hornworts been detected in geological record?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on literature, the opinions on the evolution and time of the origin of hornworts are briefly summarized, and the structure of macrofossils that were referred to as hornworts is described in detail. There are no reliable macrofossils of hornworts from the Cenozoic. The majority of the seven macrofossils classified as hornworts from the Cretaceous deposits of India, in our opinion, are not true hornworts. Shuklanites deccanii most likely represents a remain of a liverwort, and the two species of Krempogonium are the “male flower” of a moss. Nothing definite can be said about the taxonomic affiliation of the three other remains basing on the descriptions and images in the original articles. Only Notothylites nirulai is most likely the remain of a hornwort, but its relationship to Notothylas is insufficiently grounded. The type specimen of Notothylacites filiformis from the Cretaceous deposits of the Czech Republic is the remains of a plant whose spores are similar to hornworts, but the general morphology of the specimen does not allow it to be attributed to hornworts; another impression, attributed to the same species, resembles an alga rather than a bryophyte. Treatment of Dendroceros victoriensis from the Early Cretaceous deposits of Australia as a member of the modern genus is unfounded, although the impressions of its paratypes (which are the thalli with sporogonia) resemble hornworts. Macrofossils of hornworts are unknown from the Jurassic, Triassic, and Paleozoic.

Full Text

Restricted Access

About the authors

V. R. Filin

Lomonosov Moscow State University

Email: platon-anna@yandex.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

A. G. Platonova

Lomonosov Moscow State University

Author for correspondence.
Email: platon-anna@yandex.ru
Russian Federation, 1, Leninskie Gory, Moscow, 119991

References

  1. Archangelsky S., Villar de Seoane L. 1996. Estudios palinológicos de la Formación Baqueró (Cretácico), provincia de Santa Cruz, Argentina. VII. – Ameghiniana. 33(3): 307–314.
  2. Bechteler J., Peñaloza-Bojacá G., Bell D., Burleigh J.G., McDaniel S.F., Davis E.C., Sessa E.B., Bippus A., Cargill D.C., Chantanoarrapint S., Draper I., Endara L., Forrest L.L., Garilleti R., Graham S.W., Huttunen S., Lazo J.J., Lara F., Larraín J., Lewis L.R., Long D.G., Quandt D., Renzaglia K., Schäfer-Verwimp A., Lee G.E., Sierra A.M., von Konrat M., Zartman Ch.E., Pereira M.R., Goffinet B., Villarreal A.J.C. 2023. Comprehensive phylogenomic time tree of bryophytes reveals deep relationships and uncovers gene incongruences in the last 500 million years of diversification. – Am. J. Bot. 110(11): e16249. https://doi.org/10.1002/ajb2.16249
  3. Birshteyn Ya.A. 1968. Podtip zhabrodyshashchie (Branchiata). Klass rakoobraznye (Crustacea) [Subphylum Branchiata. Classis Crustacea]. – In: Zhizn’ zhivotnykh. Vol. 2. Moscow. P. 377–529 (In Russ.).
  4. Bowman J.L. 2022. The origin of a land flora. – Nature Plants. 8(12): 1352–1369.
  5. Chantanaorrapint S. 2015. Taxonomic studies on Thai Anthocerotophyta II. The genus Notothylas (Notothyladaceae). – Cryptog. Bryol. 36(3): 251–266.
  6. Chitaley S.D., Yawale N.R. 1978. On Notothylites nirulai gen. et sp. nov. A petrified sporogonium from the Deccan – Intertrappean beds of Mohgaonkalan, M.P. (India). – Botanique. 9(1–4): 111–118.
  7. Clarke J.T., Warnock R.C.M., Donoghue Ph.C.J. 2011. Establishing a time-scale for plant evolution. – New Phytol. 192: 266–301.
  8. Crandall-Stotler B. 1980. Morphogenetic designs and a theory of bryophyte origins and divergens. – BioScience. 30: 580–585.
  9. Crandall-Stotler B. 1984. Musci, hepatics and anthocerotes – an essay on analogues. – In: New manual of bryology. Nichinan. Vol. 2. P. 1094–1129.
  10. Crandall-Stotler B.J., Stotler R.E., Doyle W.T., Forrest L.L. 2008. Chapter nineteen: Phaeoceros proskaueri sp. nov., a new species of the Phaeoceros hallii (Austin) Prosk. – Phaeoceros pearsonii (M. Howe) Prosk. complex and the systematic affinities of Paraphymatoceros Hässel. – Fieldiana Botany. 47(1): 213–238.
  11. Dettmann M.E. 1963. Upper Mesozoic microfloras from South-Eastern Australia. – Proc. Roy. Soc. Victoria, new series. 77(1): 1–148.
  12. Drinnan A.N., Chambers T.C. 1996. Plants and invertibrates from the Lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria. – In: Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra group), South Gippsland, Victoria. Memoir 3 of the Association of Australian Palaeonologists. Sydney. P. 1–77.
  13. Duckett J.G., Richards P.W. 1972. Johannes Proskauer. 1923–1970. – J. Bryol. 7: 107–110.
  14. Duff R.J., Villarreal J.C., Cargill D.C., Renzaglia K.S. 2007. Progress and challenges toward developing a phylogeny and classification of the hornworts. – Bryologist. 110(2): 214–243.
  15. Edwards D., Kenrick P. 2015. The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) ‘On the plant-remains from the Downtonian of England and Wales'. – Philos. Trans., Ser. B. 370(1666): 20140343. https://doi.org/10.1098/rstb.2014.0343
  16. Erdtman G. 1965. Pollen and spore morphology/ plant taxonomy. Gymnospermae, Bryophyta (Text). Stockholm. 191 p.
  17. Filin V.R., Platonova A.G. 2018. Siliceous sporoderm of hornworts: an apomorphy or a plesiomorphy? – Wulfenia. 25: 131–156.
  18. Filin V.R., Platonova A.G. 2024. Is there a tapetum in the hornwort capsule? Evidence from the sporogenesis of Phaeoceros. Bot. J. Linn. Soc.: boae052.
  19. Frahm J.-P. 2005. The first record of a fossil hornwort (Anthocerotophyta) from Dominican amber. – Bryologist. 108(1): 139–141.
  20. Fulford M., McBride G.E., Embree C. 1972. Johannes Max Proskauer (1923–1970). – Bryologist. 75 (2): 168–173.
  21. Graham A. 1987. Miocene communities and paleoenvironments of Southern Costa Rica. – Amer. J. Bot. 74(10): 1501–1518.
  22. Graham L.E., Wilcox L.W. 2000. Algae. New York. 640 + 59 p.
  23. Grolle R. 1983. Leucolejeunea antiqua n. sp., das erste Lebermoos aus Dominikanischem Bernstein. – Stuttgart. Beitr. Naturk. 13(96): 1–9.
  24. Gupta K.M. 1956. Fossil plants from the Deccan intertrappean series. I. A bryophytic type of sporogonium. – Sci. & Cult. 2(9): 540–541.
  25. Harris B.J., Clark J.W., Schrempf D., Szöllősi G.J., Donoghue P.C., Hetherington A.M., Williams T.A. 2022. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. – Nat. Ecol. Evol. 6(11): 1634–1643.
  26. Hässel de Menéndez G.G. 1986. Leiosporoceros Hässel n. gen. and Leiosporocerotaceae Hässel n. fam. of Anthocerotopsida. – J. bryol. 14(2): 255–259.
  27. Hässel de Menéndez G.G. 1989. The North, South and Central American species of Phaeoceros (Anthocerotophyta); their spore ornamentation and taxonomy. – Candollea. 44: 715–739 (In Spanish).
  28. Hässel de Menéndez G.G. 1990. The North, South and Central American species of Anthoceros and Folioceros (Anthocerotophyta); their spore ornamentation and taxonomy. Candollea. 45: 201–220 (In Spanish).
  29. Hässel de Menéndez G.G. 2006. Paraphymatoceros Hässel, gen. nov. (Anthocerotophyta). – Phytologia, 88(2): 208–211.
  30. Herendeen P.S. 2023. Report of the Nomenclature Committee for Fossils: 16. – Taxon. 72(1): 205–207.
  31. Ishchenko Т.А. 1968. Flora verhov nizhnego – nizov srednego devona Podol’skogo Pridnestrov’ya [Flora of the upper Lower – lower Middle Devonian of Podolsk Transdniestria]. – In: Paleontologia i stratigrafia nizhnego paleozoya Volyno-Podolii. Kiev. P. 80–113 (In Russ.).
  32. Ishchenko T.A., Ishchenko A.A. 1981. Srednedevonskaya flora Voronezhskoy anteklizy [Middle Devonian flora of the Voronezh anteclise]. Kiev. 110 p. (In Russ.).
  33. Ishchenko T.A., Shlyakov R.N. 1979. Marshantsievye pechenochniki iz srednego devona Podolii [Marchantioid hepatics from Middle Devonian of Podolia]. – Paleontol. Zhurn. (3): 114–125 (In Russ.).
  34. Iturralde-Vinent M.A., MacPhee R.D.E. 1996. Age and paleogeographical origin of Dominican amber. – Science. 273(5283): 1850–1852.
  35. Johnson N.G., Gensel P.G. 1992. A reinterpretation of the Early Devonian land plant, Bitelaria Istchenko and Istchenko, 1979, based on new material from New Brunswick, Canada. – Rev. Palaeobot. Palynol. 74 (1-2): 109–138.
  36. Katagiri T. 2016. (46) Request for a binding decision on whether Notothylacites Němejc & Pacltová (Anthocerotae or Hepaticae) and Notothylites Chitaley & Yawale (Anthocerotae: Notothyladaceae) are sufficiently alike to be confused. – Taxon. 65(5): 1184.
  37. Kenrick P., Crane P.R. 1997. The origin and early diversification of land plants. A cladistic study. Washington and London. 441 p.
  38. Khursel A.S., Narkhede S.D. 2017. Report of a new petrified bryophytic thallus from the Deccan Intertrappean beds of Mohgaonkalan, MP, India. – Int. J. Res. Biosci. Agric. Technol. 5(2): 1197–1200.
  39. Kozo-Polyanskiy B.M. 1965. Kurs sistematiki vysshykh rasteniy [The course of systematics of higher plants]. Voronezh. 407 p. (In Russ.).
  40. Krassilov V.A. 1967. Kompleksnaya matseratsiya – perspektivnyy metod paleobotanicheskikh issledovaniy [Complex maceration is a perspective method of palaeobotanical research]. – Dokl. AN SSSR. 174(5): 1191–1194 (In Russ.).
  41. Krassilov V.A. 1970. Listvennye pechenochniki iz yury Bureinskogo basseina [Leafy hepatics from Jurassic of the Bureinsky basin]. – Paleontol. Zhurn. 3: 131–142 (In Russ.).
  42. Krassilov V.A. 1983. Proiskhozhdenie i evolutsiya mokhoobraznykh [Origin and evolution of bryophytes]. – In: Paleobotanika i fitostratigrfiya Vostoka SSSR. Vladivostok. P. 5–16 (In Russ.).
  43. Krassilov V.A., Sсhuster R.M. 1984. Paleozoic and Mesozoic fossils. – In: New manual of bryology. Vol. 2. Nichinan. P. 1172–1193.
  44. Krassilov V.A., Ishchenko A.A., Raskatova M.G. 1987. Bitelyarievye i problema proiskhozhdeniya mokhoobraznykh [Bitelariales and the problem of the origin of bryophytes]. – In: Komarovskie chteniya. Iss. 34. Vladivostok. P. 3–7 + Plates I–VIII (In Russ.).
  45. Leebens-Mack J.H., Barker M.S., Carpenter E.J. et al. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. – Nature. 574(7780): 679–685.
  46. Ligrone R., Duckett J.G., Renzaglia K.S. 2012a. Major transitions in the evolution of early land plants: a bryological perspective. – Ann. Bot. 109(5): 851–871.
  47. Ligrone R., Duckett J.G., Renzaglia K.S. 2012b. The origin of the sporophyte shoot in land plants: a bryological perspective. – Ann. Bot. 110(5): 935–941.
  48. Long D.G. 2015. Rudolf M. Schuster (1921–2012). – J. Bryol. 37: 151–155.
  49. Morris J.L., Puttick M.N., Clark J.W., Edwards D., Kenrick P., Pressel S., Wellman Ch.H., Yang Z., Schneider H., Donoghue P.C. 2018. The timescale of early land plant evolution. – PNAS. 115(10): E2274–E2283. https://doi.org/10.1073/pnas.1719588115
  50. Nambudiri E.M.V., Chitaley S., Yawale N.R. 2004. Krempogonium mohgaoensis gen. et sp. nov., a permineralized bryophyte from the Deccan Intertrappean beds (Upper Cretaceous) India. – In: Vistas in Palaeobotany and Plant Morphology: Evolutionary and Environmental Perspectives. Lucknow. P. 171–178.
  51. Narkhede S.D., Bhowal M. 2009. Pelliaites deccanii gen. et. sp. nov., a bryophytic sporogonium from the intertrappean beds of Mohgaonkalan, MP, India. – BIOINFOLET. 6(1): 9–13.
  52. Naumova S.N. 1949. Spory nizhnego kembriya [Spores of Lower Cambrian]. Izv. АN SSSR, ser. geol. (4): 49–56 (In Russ.).
  53. Naumova S.N. 1953. Spory nizhnego silura [Spores of Lower Silurian]. – In: Trudy konferentsii po sporovo-pyl’tsevomu analizu 1948 g. Мoscow. P. 165–190 (In Russ.).
  54. Němejc F., Kvaček Z. 1975. Senonian plant macrofossils from the region of Zliv and Hluboká (near České Budějovice) in South Bohemia. Praha. 183 p. + 24 Pl.
  55. Nĕmejc F., Pacltová B. 1974. Hepaticae in the Senonian of South Bohemia. – Palaeobotanist. 21: 23–26.
  56. Niklas K.J., Cobb E.D., Kutschera U. 2016. Haeckel’s biogenetic law and land plant phylotypic stage. – BioScience. 66(6): 510–519.
  57. Pant D.D., Bhowmik (neé Basu) N. 1998. Fossil bryophytes – with special reference to Gondwanaland forms. – In: Topics in bryology. New Delhi et al. P. 1–52.
  58. Patil Sh.P. 2023.Report of a bryophytic capsule from the Deccan Intertrappean series of Madhya Pradesh, India. – Universal Research Reports. 10(03): 145–149.
  59. Potemkin A.D. 2007. Marchantiophyta, Bryophyta, Anthocerotophyta – the specific ways of gametophyte trend of evolution of the land plants. – Bot. Zhurn. 92(11): 1625–1652 (In Russ.).
  60. Proskauer J. 1960. Studies on Anthocerotales VI. – Phytomorphology. 10(1): 1–19.
  61. Proskauer J. 1964. Riccia tuberosa Taylor = Anogramma leptophylla (L.) Link, or on the importance of being bryophytic. – J. Indian bot. Soc. 42A: 185–188.
  62. Proskauer J. 1969. Studies on Anthocerotales. VIII. Phytomorphology. 19(1): 52–66.
  63. Pundkar S.V. 2021. A new sporophyte from the Deccan intertrappean beds of Central India. – Int. J. Adv. Res. Innov. 8(4): 25–30.
  64. Puttick M.N., Morris J.L., Williams T.A., Cox C.J., Edwards D., Kenrick P., Pressel S., Wellman Ch.H., Schneider H., Pisani D., Donoghue Ph.C.J. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. – Curr. Biol. 28: 733–745.
  65. Ruggiero M.A., Gordon D.P., Orrell T.M., Bailly N., Bourgoin T., Brusca R.C., Cavalier-Smith Th., Guiry M.D., Kirk P.M. 2015. A higher level classification of all living organisms. – PloS one. 10(4): e0119248. https://doi.org/10.1371/journal.pone.0119248
  66. Samant B., Mohabey D.M. 2009. Palynoflora from Deccan volcano-sedimentary sequence (Cretaceous-Palaeogene transition) of central India: implications for spatio-temporal correlation. – J. Biosci. 34: 811–823.
  67. Savicz-Lyubitzkaja L.I., Abramov I.I. 1958. Geological annals of Bryophyta. – Bot. Zhurn. 43(10): 1409–1417 (In Russ.).
  68. Schmidt A.R., Hentschel J., Heinrichs J. 2010. The fossil hornwort described from Dominican amber is an angiosperm flower. – Rev. Palaeobot. Palynol. 160(3-4): 209–211.
  69. Schuster R.M. 1981. Paleoecology, origin, distribution through time, and evolution of hepaticae and anthocerotae. – In: Paleobotany, paleoecology and evolution. New York. P. 149–191.
  70. Schuster R.M. 1984. Evolution, phylogeny and classification of the Hepaticae. – In: New manual of bryology. Vol. 2. Nichinan. P. 892–1070.
  71. Schuster R.M. 1992. The Hepaticae and Anthocerotae of North America east of the Hundredth Meridian. Vol. 6. Chicago. 937 p.
  72. Sharma B.D., Suthar O.P. 1986. Sporangioceros nipanica Sharma et al., a petrified primitive bryophyte from the Jurassic of Rajmahal Hills, India. – J. Hattori Bot. Lab. 60: 271–274.
  73. Sharma B.D., Bohra D.R., Suthar O.P. 1984. Two isolated petrified sporangia from the Rajmahal Hills, India. – Indian Journal of Earth Sciences. 11(1): 87–91 (cited after: Sharma, Suthar, 1986).
  74. Sharma B.D., Bohra D.R., Suthar O.P. 2002. Reinterpretation of an extinct taxon Sporangioceros nipanica Sharma et al. from the Rajmahal Hills, India. – Palaeobotanist. 51: 31–36.
  75. Shlyakov R.N. 1975. Pechenochnye mkhi. Morfologiya, filogeniya, klassifikatsiya [Liverworts. Morphology, phylogeny, classification]. Leningrad. 148 p. (In Russ.).
  76. Singhai L.C. 1964. On a fossil bryophytic sporogonium from the Deccan Intertrappean beds. – Curr. Sci. 33(4): 117–119.
  77. Singhai L.C. 1973. Shuklanites deccanii Singhai, an anthocerotaceous sporogonium from the Deccan Intertrappean beds of Mohgaonkalan. – Palaeobotanist. 22(2): 171–175.
  78. Sluiman H.J. 1983. The flagellar apparatus of the zoospore of the filamentous green alga Coleochaete pulvinata: absolute configuration and phylogenetic significance. – Protoplasma. 115: 160–175.
  79. Smith G.M. 1955. Cryptogamic botany. Vol. II. Bryophytes and Pteridophytes. – 2nd ed. New York et al. 399 p.
  80. Stratigraficheskiy spravochnik [Stratigraphic guide. India, Pakistan, Nepal, Bhutan, Burma, Ceylon]. 1960. Moscow. 493 с. (In Russ., transl. from Eng.).
  81. Su D., Yang L., Shi X., Ma X., Zhou X., Hedges S.B., Zhong B.2021. Large-scale phylogenomic analyses reveal the monophyly of bryophytes and neoproterozoic origin of land plants. – Molec. Biol. Evol. 38(8): 3332–3344.
  82. Takhtadzhyan A.L. 1978. Proiskhozhdenie mokhovidnykh [Origin of bryophytes]. – In: Zhizn’ rasteniy. Vol. 4. Moscow. P. 54–55 (In Russ.).
  83. Taylor T.N., Taylor E.L., Krings M. 2009. Paleobotany. 2nd ed. Amsterdam et al. 1230 p.
  84. Timonin A.K., Filin V.R. 2012. Botanika: v 4 tomakh [Botany: in 4 volumes]. Vol. 4, part 1. Moscow. 313 p. (In Russ.).
  85. Tomescu A.M., Bomfleur B., Bippus A.C., Savoretti A. 2018. Why are bryophytes so rare in the fossil record? A spotlight on taphonomy and fossil preservation. – In: Transformative paleobotany. P. 375–416. doi: 10.1016/b978-0-12-813012-4.00016-4.
  86. Villarreal J.C., Cargill D.C. 2016. Anthocerotophyta. – In: L. Söderström et al. World checklist of hornworts and liverworts. – PhytoKeys. 59: 27–41.
  87. Villarreal J.C., Renner S.S. 2012. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. – Proc. Natl. Acad. Sci. U.S.A. 109(46): 18873–18878.
  88. Wulf E.W., Maleeva O.F. 1969. The world resources of the useful plants. Leningrad. 566 p. (In Russ.).
  89. Zerov D.K. 1972. Outlines of non-vascular plant phylogeny. Kiev. 315 p. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A macrofossil in Dominican amber. For explanations, see the text. After: Frahm, 2005, p. 140, Fig. 2, with changes. Scale bar: 1 mm.

Download (189KB)
3. Fig. 2. Macrofossils from the cherts collected near the Mohgaon-Kalan locality, India, Upper Cretaceous: sporogonium resembling Notothylas (A, B), Shuklanites deccanii (C–E), Notothylites nirulai (F, G). A – sporogonium; B – spores and elater-like bodies; С, D – an almost radial (C) and the next (D) section in the series of successive peels of a sample; F – radial section of sample; G – a spore and a two-celled pseudoelater; for explanations, see the text. A and В – after: Gupta, 1956, p. 541, Fig. B-2 (A) and Fig. B-3 (В), with changes; С and D – after micrographs: Singhai, 1973, Plate 1-1 and Plate 1-2, respectively; E – after: Singhai, 1973, p. 173, Text-fig. 3, with changes; F, G – after: Chitaley, Yawale, 1978, p. 113, Text Figures 1 and 5, respectively, with changes. Scale bars: А, С, D – 250 µm; B, E, G – 15 µm; F – 1 mm.

Download (180KB)
4. Fig. 3. Thalli with sporogonia of Notothylas javanica (A, B) and N. cf. orbicularis (C) in longitudinal sections. B – an enlarged portion of A. 1 – seta-like slender part of the capsule base; 2 – involucre; 3 – thallus; 4 – foot; columella was out of the section in С. Scale bars: А, С – 0.2 mm; В – 50 µm.

Download (402KB)
5. Fig. 4. Macrofossils from the cherts collected near the Mohgaon-Kalan locality, India, Upper Cretaceous: Krempogonium mohgaoensis. A – reconstruction of the sample performed by E. Namboodiri and co-authors (after: Nambudiri et al., 2004, p. 174, Text-fig. 2, with changes); B – our interpretation of the micrograph (Nambudiri et al., 2004, p. 176, Plate 2-1); for explanations, see the text. Scale bar: 1 mm.

Download (221KB)
6. Fig. 5. Macrofossils from the cherts collected near the Mohgaon-Kalan locality, India, Upper Cretaceous: Anthoceroites deccanii (A) and Sporollites harisii (B–D). A – our drawing based on the micrograph (Khursel, Narkhede, 2017, p. 1199, Plate-1, Fig. 5); B – schematic drawing by S. Pundkar, with changes (Pundkar, 2021, p. 28, Text Fig. 1); С, D – our drawings based on the microphotographs (Pundkar, 2021, p. 29, Plate Fig 1 (D), Fig. 5–7 (C)); for explanations, see the text. Because of the inconsistency of the sizes in descriptions and figures in the original articles, scale bars are not given.

Download (173KB)
7. Fig. 6. Notothylacites filiformis, Czechia, Late Cretaceous (A-E), and Cladophora sericea (F). A – holotype (after: Nĕmejc, Pacltová, 1974, Plate 1-1, with changes), F. Nĕmejc and B. Pacltová indicated only one sporangium (lower left) in the photograph; B – isotype (after: Nĕmejc, Kvaček, 1975, Plate 1-1, with changes); С – drawing from the paper of V.A. Krassilov and R. Shuster (after: Krassilov, Shuster, 1984, p. 1183, Fig. 2, with changes); D, E – spores at the earlier (D) and later (E) stages of maceration (after: Nĕmejc, Pacltová, 1974, Plate 4-13 (D) and Plate 4-15 (E), with changes); F – thallus of herbarium specimen; for explanations, see the text. Scale bars: A – 5 mm, B, F – 2 mm; D, E – 20 µm.

Download (718KB)
8. Fig. 7. Spores of Notothylas cf. orbicularis. A – intact spore; B – ultrastructure of the sporoderm portion (TEM); C – outer layer of the pseudoperisporium peeled off the spore after acetolysis; D – exosporium without pseudoperisporium after acetolysis; 1 – exosporium; 2 – lamellate pseudoperisporium, arrow – siliceous layer of pseudoperisporium. Scale bars: А – 10 µm, B – 1 µm; С, D – 20 µm.

Download (185KB)
9. Fig. 8. Dendroceros victoriensis, Australia, Early Cretaceous (A, B) and Characiosiphonites nipanica (=Sporangioceros nipanica), Rajmahal Hills (India), Jurassic (C, D); for explanations, see the text. A, B – after: Drinnan, Chambers, 1996, р. 12, Fig. 6A, B, with changes; C – after micrographs: Sharma, Suthar, 1986, p. 272, Fig. A, C, also: Sharma et al., 2002; p. 33, Plate 1–3, 4; D – after: Sharma et al., 2002, p. 35, Fig. 15, with changes. Scale bars: A, B – 2 mm; С – 100 µm; D – 500 µm.

Download (240KB)
10. Fig. 9. Macrofossil from Jurassic beds of Bureinsky basin. Arrows: the structures which V.A. Krassilov considered as elaters. After: Krassilov, 1967, Fig. 1.18. Scale bar: 100 µm.

Download (120KB)
11. Fig. 10. Hypothetical stages of a psilophyte-like polysporangiate sporophyte evolution from an anthocerote-like ancestor (far left); for explanations, see the text. А – after: Smith, 1955, p. 133, Fig. 82; В – after: Ligrone et al., 2012a, p. 863, Fig. 9, p. 861, Fig. 8, and Ligrone et al., 2012b, p. 938, Fig. 1, with changes. The meristem is indicated with arrows in Fig. B.

Download (154KB)

Copyright (c) 2025 Russian Academy of Sciences