Structural-phase transformations in α-Ti under different types of deformation at room temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A study of the phase transformation in technically pure titanium under different types of deformation: high pressure and high pressure torsion (HPT). The set of modern methods of the study included microindentation, X-ray diffraction, transmission electron microscopy, as well as EXAFS spectroscopy in synchrotron radiation for detailed studying a local atomic structure of phases. The correlation between the phase transformation course and the deformation method has been found. It has been shown that in contrast to pressure without a shear component, the shear deformation under high pressure at room temperature contributes to the occurrence of a high-temperature β-phase with a local atomic order different from that in the initial phase.

Full Text

Restricted Access

About the authors

N. A. Shurygina

Bardin Central Research Institute for Ferrous Metallurgy; Russian Technological University MIREA

Author for correspondence.
Email: shnadya@yandex.ru
Russian Federation, Moscow, 105005; Moscow, 119454

R. V. Sundeev

Russian Technological University MIREA

Email: shnadya@yandex.ru
Russian Federation, Moscow, 119454

A. V. Shalimova

Bardin Central Research Institute for Ferrous Metallurgy

Email: shnadya@yandex.ru
Russian Federation, Moscow, 105005

A. A. Veligzhanin

Kurchatov Complex for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute”

Email: shnadya@yandex.ru
Russian Federation, Moscow, 123182

E. N. Blinova

Bardin Central Research Institute for Ferrous Metallurgy

Email: shnadya@yandex.ru
Russian Federation, Moscow, 105005

A. M. Glezer

Bardin Central Research Institute for Ferrous Metallurgy

Email: shnadya@yandex.ru
Russian Federation, Moscow, 105005

O. P. Chernogorova

Baikov Institute of Metallurgy and Materials Science, RAS

Email: shnadya@yandex.ru
Russian Federation, Moscow, 119334

References

  1. Vinogradov A., Estrin Yu. Analytical and numerical approaches to modelling severe plastic deformation // Progr. Mater. Sci. 2018. V. 95. P. 172–242.
  2. Edalati K., Bachmaier A., Beloshenko V., Beygelzimer Y., Blank V.D., Botta W.J., Bryła K., Čížek J., Divinski S., Enikeev N.A., Estrin Y., Faraji G., Figueiredo R.B., Fuji M., Furuta T., Grosdidier T., Gubicza J., Hohenwarter A., Horita Z., Huot J., Ikoma Y., Janeček M., Kawasaki M., Král P., Kuramoto S., Langdon T.G., Leiva D.R., Levitas V.I., Mazilkin A., Mito M., Miyamoto H., Nishizaki T., Pippan R., Popov V.V., Popova E.N., Purcek G., Renk O., Révész Á., Sauvage X., Sklenicka V., Skrotzki W., Straumal B.B., Suwas S., Toth L.S., Tsuji N., Valiev R.Z., Wilde G., Zehetbauer M.J., Zhu X. Nanomaterials by severe plastic deformation: review of historical developments and recent advances // Mater. Res. Lett. 2022. V. 10. P. 163–256.
  3. Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988 // Mater. Sci. Eng.A. 2016. V. 652. P. 325.
  4. Glezer A.M., Kozlov E.V., Koneva N.A., Popova N.A. and Kurzina I.A. Plastic Deformation of Nanostructured Materials // CISP, Taylor & Francis Group. 2017. 334 p.
  5. Страумал Б.Б., Заворотнев Ю.Д., Метлов Л.С., Страумал П.Б., Петренко А.Г., Томашевская Е.Ю. Фазовые превращения, вызванные кручением под высоким давлением // ФММ. 2022. T. 123. № 12. С. 1283–1288.
  6. Утяшев Ф.З. Деформационные методы получения и обработки ультрамелкозеренных материалов. Уфа: Гилем. НИКБашк. энцикл, 2013. 376 с.
  7. Zhang J., Zhao Y., Pantea C., Qian J., Daemen L.L., Rigg P.A, Hixson R.S., Greeff C.W., Gray III G.T., Yang Y., Wang L., Wang Y., Uchid T. Experimental constraints on the phase diagram of elemental zirconium // J. Phys. Chem. Sol. 2005. V. 66. P. 1213.
  8. Валиев Р.З., Усанов Э.И., Резяпова Л.Р. Сверхпрочность наноструктурных металлических материалов: физическая природа и механизмы упрочнения // ФММ. 2022. Т. 123. № 12. С. 1355–1361.
  9. Nosova G.I. Phase Transformations in Titanium Based Alloys. Moscow: Metallurgia, 1968. 180 p.
  10. Zel'Dovich V.I., Frolova N. Yu., Patselov A.M., Gundyrev V.M., Kheifets A.E., Pilyugin V.P. The ω-phase in titanium upon deformation under pressure // Phys. Met. Metal. 2010. V. 109. № 1. P. 30–38.
  11. Жиляев А.П., Попов В.А., Шарафутдинов А.Р., Даниленко В.Н. Индуцированная сдвигом под давлением метастабильная ω-фаза в титане // Письма о материалах. 2011. Т. 1. С. 203–207.
  12. Kriegel M.J., Rudolph M., Kilmametov A., Straumal B.B., Ivanisenko J., Fabrichnaya O., Hahn H., Rafaja D. Formation and Thermal Stability of ω-Ti(Fe) in α-Phase-Based Ti(Fe) Alloys // Metals. 2020. V. 10. P. 402.
  13. Shirooyeh M., Xu J., Langdon T.G. Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion // Mater. Sci. Eng. A. 2014. V. 614. P. 223–231.
  14. Egorova L. Yu., Khlebnikova Yu.V., Pilyugin V.P., Resnina N.N. Calorimetry and peculiarities of reverse ω → α phase transformation in Zr and Ti pseudo-single crystals // Phys. Met. Metal. 2022. V. 123. № 5. P. 482–488.
  15. Todaka Y., Sasaki J., Moto T., Umemoto M. Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining // Scripta Mater. 2008. V. 59. P. 615–618.
  16. Pérez-Prado M.T., Gimazov A.A., Ruano O.A. Bulk nanocrystalline ω-Zr by high-pressure torsion // Scripta Mater. 2008. V. 58. P. 219.
  17. Zhilyaev A.P., Galvez F., Sharafutdinov A., Pérez-Prado M.T. Influence of the high pressure torsion die geometry on the allotropic phase transformations in pure Zr // Mater. Sci. Eng. A. 2010. V. 527. P. 3918.
  18. Adachi N., Todaka Y., Suzuki H., Umemoto M. Evolution of deformation texture of high-pressure ω-phases in pure Ti and Zr during high-pressure torsion straining // IOP Conf. Series: Mater. Sci. Eng. 2015. V. 82. P. 012020.
  19. Shahmir H., Langdon T.G. Characteristics of the allotropic phase transformation in titanium processed by high-pressure torsion using different rotation speeds // Mater. Sci. Eng. A. 2016. V. 667. P. 293–299.
  20. Shurygina N.A., Cheretaeva A.O., Glezer A.M., D’yakonov D.L., Chshetinin I.V., Sundeev R.V., Tomchuk A.A., Muradimova L.F. Effect of the temperature of megaplastic deformation in a Bridgman chamber on the formation of structures and the physicochemical properties of Titanium // Bulletin of the Russian Academy of Sciences: Physics. 2018. V. 82. № 9. P. 1113–1124.
  21. Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. Structural Materials Science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009. V. 603. № 1–2. P. 95–98.
  22. Newville M. EXAFS analysis using FEFF and FEFFIT // J. Synchrotron Radiation. 2001. V. 8. № 2. P. 96–100.
  23. Sigov A.S., Lazarenko E.R., Golovanova N.B., Minaeva O.A., Anevsky S.I., Minaev R.V., Pushkin P. Yu. Synchrotron radiation of a single electron application for optical spectroradiometry // Russ. Technol. J. 2023. V. 11. № 5. P. 71–80.
  24. Joress H., Ravel B., Anber E., Hollenbach J., Sur D., Hattrick-Simpers J., Taheri M.L., DeCost B. Why is EXAFS for complex concentrated alloys so hard? Challenges and opportunities for measuring ordering with X-ray absorption spectroscopy // Matter. 2023. V. 6. № 11. P. 3763–3781.
  25. Srabionyan V.V., Bugaev A.L., Pryadchenko V.V., Avakyan L.A., van Bokhoven J.A., Bugaev L.A. EXAFS study of size dependence of atomic structure in palladium nanoparticles // J. Phys. Chem. Solids. 2014. V. 75. № 4. P. 470–476.
  26. Wyckoff R.W.G. Hexagonal closest packed, hcp, structure / Crystal Structures, Second edition. Interscience Publishers. New York, 1963. V. 1. P. 7–83.
  27. Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. Москва: ВИЛС–МАТИ, 2009. 520 c.
  28. Wei H. Effect of alloying elements on the properties of titanium alloy // Rare Metal Mater. Eng. 1978. V. 7. P. 47–75.
  29. Glezer A.M., Sundeev R.V., Shalimova A.V., Metlov L.S. Physics of severe plastic deformation // Phys. Usp. 2023. V. 66. P. 3258.
  30. Edalati K., Miresmaeili R., Horita Z. Significance of temperature increase in processing by high-pressure torsion Mater. Sci. Eng. A. 2011. V. 528. P. 7301.
  31. Pereira P.H.R., Figueiredo R.B., Huang Y., Cetlin P.R., Langdon T.G. Modeling the temperature rise in high-pressure torsion // Mater. Sci. Eng. A. 2014. V. 593. P. 185–188.
  32. Hartley K.A., Duffy J., Hawley R.H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates // J. Mech. Phys. Solids. 1987. V. 35. № 3. P. 283–301.
  33. Li J.G., Umemoto M., Todaka Y., Fujisaku K., Tsuchiya K. The dynamic phase transformation and formation of nanocrystalline structure in SUS304 austenitic stainless steel subjected to high pressure torsion // Rev. Adv. Mater. Sci. 2008. V. 18. P. 577–582.
  34. Разумов И.К., Ермаков А.Е., Горностырев Ю.Н., Страумал Б.Б. Неравновесные фазовые превращения в сплавах при интенсивной пластической деформации // УФН. 2020. Т. 190. № 8. С. 785–810.
  35. Kilmametov A.R., Vaughan G., Yavari A.R., LeMoulec A., Botta W.J., Valiev R.Z. Microstructure evolution in copper under severe plastic deformation detected by in situ X-ray diffraction using monochromatic synchrotron light // Mater. Sci. Eng. A. 2009. V. 503. № 1–2. P. 10–13.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction pattern of VT1-0 titanium samples in the initial state and after applying a pressure of 6 GPa for 10 min.

Download (122KB)
3. Fig. 2. Electron microscopic images of the alloy microstructure in the initial state (a) and after applying a pressure of 6 GPa for 10 min (b).

Download (364KB)
4. Fig. 3. Comparison of the experimental (transparent blue dots) and calculated EXAFS spectra (solid lines) in R-space for the VT1-0 sample in the initial state (a), after applying a pressure of 6 GPa with a holding time of 10 minutes (b), after HPT for 1 revolution (c), after HPT for 4 revolutions (d).

Download (257KB)